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Abstract

The transport phenomema electrokinesis and dielectrophoresis are studied theoretically, exper-
imentally, and computationally. Novel electrokinesis-based microfluidic devices are synthesized to
solve practical engineering problems including turning and injecting analyte bands. The novel ex-
perimental methodology used to validate the theory and computational software tools is described
and presented. Finally, the computational software tools developed to assist with both practical
design and fundamental theory are presented.
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CHAPTER 1

Applied Microfluidic Physics LDRD
Overview

The primary goal of the Applied Microfluidic Physics LDRD was to develop a fundamental under-
standing of and experimental and design tools for electrokinesis-based microsystems. This report
overviews selected accomplishments of the LDRD. Accomplishments that have been previously pub-
lished are summarized and referenced in Chapter 2. Non-patent-sensitive unpublished accomplish-
ments are detailed in Chapters 3–5. A significant volume of the accomplishments of this LDRD
are documented in patent filings that remain pending at the time of this writing and are not pre-
sented. Intellectual-property sensitive material that has not previously been publicly disclosed is
intentionally absent from this report to protect Sandia’s investment.

This LDRD successfully achieved its objectives and additionally generated microfluidic device
designs and methodologies having substantial technological importance. These advances include the
precision experimental validation of the theory of ideal electrokinesis, the inventions of low-dispersion
turns and junctions, high-performance sample-injection methodologies, and the invention of a new
class of microfluidic devices based upon dielectrophoresis. The LDRD has also produced powerful
and simple-to-use software for simulating electrokinesis and dielectrophoresis-based microsystems of
arbitrary quasi-two-dimensional geometry. In the course of meeting the objectives of the LDRD,
significant advances were made in the field of microflow diagnostics, fixturing, and instrumentation.

The following sections of this chapter describe the concept of ideal electroosmosis, a central
theoretical advance behind the technical advances in this LDRD, and overviews the motivation
behind and the results of the AMPL LDRD.

1.1 Introduction to ideal electrokinesis

Electrokinesis (EK), the flow a material having a net mobile charge under the influence of an applied
electric field, is a physical phenomenon behind an emerging billion dollar industry. Electrokinesis
embodies both electrophoresis (EP)—electrokinesis of solids immersed in a liquid—and electroosmo-
sis (EO)—electrokinesis of liquids past solid boundaries. Electrophoresis is widely used in analytical
chemistry and microbiology to separate molecules and particles by charge-to-mass ratio or surface-
charge density. Electroosmosis is used to produce flow and pressure in electrokinetic pumps and to
augment transport of molecules and particles in chemical separations by capillary electrochromatog-
raphy (CEC) and recently in more general microfluidic systems.

First documented in 1809 by Reuss in observations of electrostatically induced flow in fine glass
capillaries[32], electrokinesis in straight channels and simple geometries has been studied extensively
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during the 20th century[37, 33, 30][...]. The nanoscopic physics behind electrokinesis is understood
qualitatively. Quantitative semi-empirical models based upon this physical understanding are suc-
cessful at reducing experimental data and reconciling data from different types of electrokinetic
systems.

The problem of understanding electrokinesis in systems of arbitrary geometry[25] has until re-
cently been less successful. Numerical or theoretical modelling requires the coupling of the Navier-
Stokes flow equations, the Poisson equation of electrostatics, the Boltzmann equation of statistical
thermodynamics and species transport equations, together with models of physical properties at the
liquid-solid interfaces. The numerical solution of these coupled equations is complicated by the wide
range of length scales in typical flow systems of interest. For example, the physical properties of the
liquid typically vary over a distance O(1–10 nm) from the solid boundary. The thickness of the layer
in the fluid having an appreciable mobile net charge, the Debye layer, is typically O(1–100 nm).
Photolithographically defined microchannels most often used in microfluidics have cross-flow dimen-
sions typically O(1–100 µm). The length of such channels can be O(10–100 mm). There have been a
number of attempts at simulation of electrokinesis in spite of these difficulties[26], but the disparity
in length scales typically requires the modeler to adopt physically unrealistic approximations, e.g.,
expanding the thickness of the Debye layer by three orders of magnitude.

In a previous Sandia LDRD, the concept of “ideal electrokinesis” was explored[5]. The goal of the
study was to find a physically meaningful ideal limit of electrokinetic flow which was analytically and
numerically tractable. This study produced the theoretically and technologically important result
that the electrokinetic flow velocity field is everywhere proportional to the local electric field within
the fluid, provided some well-defined conditions are met. The uniform proportionality between the
electric field and flow velocity is termed “similitude.” The value of the proportionality coefficient is
the same as the empirical constant developed previously for simple geometries. Ideal electrokinesis
is a useful concept since it represents a desirable limiting case in which hydrodynamic dispersion is
minimal and both the flow and electric field can be derived from a single solution of the Laplace
equation. A wide range of numerical methods, analytic tools, and mathematical theorems have been
derived for solutions of this equation. The conditions for similitude are[7]

1. the geometrical dimensions of the flow channel are everywhere large compared to the thickness
of the Debye layer,

2. the liquid is at least weakly conductive and has a uniform conductivity, dielectric constant,
and viscosity (outside the Debye layer),

3. the surfaces bounding the channels are non-conducting, impervious to the fluid, and have a
uniform surface charge density, and

4. the flow through entry and exit ports of the system satisfies similitude.

Condition 1. is met for most photolithographically defined channels and systems of interest in mi-
crofluidics. Condition 2. is met for systems filled with a uniform liquid, which applies to many
microfluidic applications, but notably excludes separation systems employing buffer gradients and
“sample stacking.” Condition 3. is commonly satisfied locally within a microsystem, but cannot
apply everywhere, since the electric field is applied by electrodes that cannot be insulating. For-
tunately, the perturbation produced by the electrodes decays rapidly away from the electrodes, so
both Condition 3. and 4. are approximated to a high precision provided electrodes are located
remotely. Condition 4. also requires that there is no total pressure difference across the entry and
exit ports. Such differences can be minimized in practical systems by nulling pressure differences
produced hydrostatically and by surface tension, locating electrodes in comparatively large open
fluid reservoirs, and constructing microsystems from a single type of material.
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1.2 Accomplishments of this LDRD

Although supported by a mathematical proof (see also Section 2.1), the concept of ideal electroki-
nesis required definitive experimental validation to show that the physical presumptions[7] behind
ideal electrokinesis are correct and to demonstrate that the conditions for similitude can be readily
approached in practice. This validation appears in Chapter 3. A new high-resolution particle-image
velocimetry methodology was developed to perform this validation convincingly. This technique,
documented in Chapter 4, can provide measurements of the velocity fields of stationary flows having
a spatial resolution limited only by optical diffraction. Although outside the thrust of the LDRD,
the methodology was also applied to study a turbulent jet flow. This demonstration showed for
the first time how a parallel technique like particle-image velocimetry can effectively provide high-
resolution flow velocity statistics and multiple-point correlations previously obtainable only by point
techniques like laser Doppler velocimetry or hot-wire anemometry.

The precision validation of ideal electrokinesis helps to liberate the microfluidic designer from a
difficult, expensive, and time-consuming design—fabricate—test design cycle to a design—simulate
cycle. This cycle was not immediately easy to embrace, however, since appropriate simulation
tools were not available. The software application Laplace was written to assist designers with
the new design methodology. Laplace rapidly and precisely simulates ideal electrokinesis in quasi-
planar microsystems whose geometry is defined by a bitmap image—essentially a picture of the
microsystem. It has been a useful tool for our theoretical development as well, providing all the
numerical simulations that appear in this report. Chapter 5 outlines the Laplace software.

Perhaps most exciting, mathematical modeling tools allow designers to adopt the most modern
design technique (which is no longer a cycle): identify requirements—synthesize a design to meet
these requirements. Several high-value synthetic designs[17] were developed and filed for patent
protection during this LDRD. A patent describing the optimum geometry of low-dispersion turns and
junctions (US 6,270,641B1) has issued in August 2000 (see Section 2.7). These turns allow designers
to bend and fold channels on chips without the substantial dispersion penalty of conventional turns.
As a result of these designs, meter-long separation columns can be shrunk below the size of a
fingernail with an insignificant loss in separation efficiency.

Ideal electrokinesis has the special property of “solenoidality.” This means particles and molecules
undergoing electrokinesis are neither concentrated nor rarefied. Thus, when particle concentration
gradients began to appear in experiments that should have satisfied the conditions for ideal electroki-
nesis, it was clear that a different transport phenomenon had appeared[9]. Indeed this understanding
led to the immediate diagnosis of dielectrophoresis, the flow of particles under the action of an elec-
tric field gradient. Dielectrophoresis is of second order in the applied electric field and proportional
to the difference between the particle and immersion-fluid polarizability, just like buoyancy is pro-
portional to the difference between the particle and immersion-fluid density. Most importantly,
dielectrophoresis is not solenoidal so it can concentrate and rarefy particles. While the details of the
work in dielectrophoresis are sensitive Sandia intellectual property, they promise to produce a new
class of microfluidic devices. Our publicly disclosed work in dielectrophoresis appears in Chapter 3.
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CHAPTER 2

Summary of published results from the
AMPL LDRD

This chapter presents references, abstracts, and brief summaries of selected published results of the
AMPL LDRD.

2.1 Conditions for similitude between the electric field and flow

velocity in electroosmotic flow

Cummings, E. B., Griffiths, S. K., Nilson, R. H., Paul, P. H. (2000) “Conditions for similitude be-
tween the fluid velocity and electric field in electroosmosis,” Anal. Chem., 72, pp 2526–2532.[7]

Electroosmotic flow is fluid motion driven by an electric field acting on the net fluid charge produced
by charge separation at a fluid-solid interface. Under many condi-tions of practical interest, the re-
sulting fluid velocity is proportional to the local electric field, and the constant of proportionality
is everywhere the same. Here we show that the main conditions necessary for this similitude are a
steady electric field, uniform fluid and electric proper-ties, an electric Debye layer that is thin com-
pared to any physical dimension, and fluid velocities on all inlet and outlet boundaries that satisfy
the Helmholtz-Smolu-chowski relation normally applicable to fluid-solid bound-aries. Under these
conditions, the velocity field can be determined directly from the Laplace equation governing the
electric potential, without solving either the continuity or momentum equations. Three important
consequences of these conditions are that the fluid motion is everywhere irrotational, that fluid veloc-
ities in two-dimensional chan-nels bounded by parallel planes are independent of the channel depth,
and that such flows exhibit no dependence on the Reynolds number. Similitude is demonstrated by
comparing measured and computed fluid streamlines with computed electric flux lines.

2.2 Fluorescent liposome flow markers for microscale particle-

image velocimetry

Singh, A. K., Cummings, E. B., Throckmorton, D. J., (2001) “Fluorescent liposome flow markers
for microscale particle-image velocimetry,” Anal. Chem., 73, pp 1057–1061.[36]
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Unilamellar liposomes carrying both encapsulated and surface-immobilized fluorophores have been
synthesized as novel fluorescent markers to image flow profiles in microfabricated structures. The
unilamellar liposomes were made with phospholipids and cholesterol by extru-sion through a poly-
carbonate membrane. They contained carboxyfluorescein in the aqueous core and fluorescein-labeled
lipids in the bilayer to render them both a surface and volume fluorescer, maximizing their fluo-
rescence intensity. The lipid composition was chosen to impart a net negative charge to liposomes
to minimize self-aggrega-tion as well as interaction with negatively charged glass surfaces of the
channels. These liposomes were mono-disperse (mean diameter 283 nm), neutrally buoyant, and
hydrophilic and exhibited no adsorption on glass surfaces. Unlike polystyrene spheres, they were
readily broken up by surfactants, thereby allowing for easy and complete removal from microfluidic
channels. The fluorescent liposomes were used to investigate pressure-driven flow in an offset cross
intersection in a microfluidic chip and provided images with excellent signal-to-noise ratio. A novel
computational scheme that is particularly suitable for analyzing particle-image velocimetry data in
micrometer-scale flow channels was employed to analyze the images. These liposomes are easily
synthesized and can be custom-made for various applications to offer a broad range of surface and
volume characteristics such as charge, size, and surface chemistry.

2.3 Electroosmotic fluid motion and late-time solute transport

for large zeta potentials

Griffiths, S. K., Nilson, R. H., (2000) “Electroosmotic fluid motion and late-time solute transport
for large zeta potentials,” Anal. Chem.,72, pp 4767–4777.[16]

2.3 Abstract

Analytical and numerical methods are employed to determine the electric potential, fluid velocity and
late-time solute distribution for electroosmotic flow in a tube and channel when the zeta potential is
not small. The electric potential and fluid velocity are in general obtained by numerical means. In
addition, new analytical solutions are presented for the velocity in a tube and channel in the extremes
of large and small Debye layer thickness. The electroosmotic fluid velocity is used to analyze late-time
transport of a neutral non-reacting solute. Zeroth and first-order solutions describing axial variation
of the solute concentration are determined analytically. The resulting expressions contain eigenvalues
representing the dispersion and skewness of the axial concentration profiles. These eigenvalues and
the functions describing transverse variation of the concentration field are determined numerically
using a shooting technique. Results are presented for both tube and channel geometries over a wide
range of the normalized Debye layer thickness and zeta potential. Simple analytical approximations
to the eigenvalues are also provided for the limiting cases of large and small values of the Debye
layer thickness. The methodology developed here for electroosmotic flow is also applied to the Taylor
problem of late-time transport and dispersion in pressure-driven flows.

2.3 Summary

We have examined the electroosmotic fluid motion and late-time solute transport in a tube and in
a channel for cases in which the zeta potential is not negligibly small. Using both numerical and
analytical methods, the transverse variation of the electric potential and fluid speed were computed
over a broad range of the normalized Debye layer thickness, λ∗, and the normalized zeta potential, ζ∗.
These fluid velocities were then used to compute the late-time distribution of a neutral non-reacting
solute carried in the flow.
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The numerical procedure used here is based on a shooting method. This procedure was checked
against previously-published analytical and numerical solutions for both large and small values of
the zeta potential. In comparisons with analytical results for a negligible zeta potential, the two
agree within a relative error of 10−6 for all values of the transverse position and values of λ∗ between
10−3 and 103.

Analytical solutions were also obtained for the fluid velocity in a tube and channel in the asymp-
totic limits of small and large λ∗. The first of these applies when the Debye layer thickness is small
compared to the transverse tube or channel dimension and is valid for all values of the normalized
zeta potential. The second is applicable to large values of the Debye layer thickness. These solu-
tions are again valid for all ζ∗, but carry the restriction that sinhζ∗/ζ∗ < λ∗2. The accuracy and
applicable range of each solution is discussed, and expansions of the solutions for large and small ζ∗

are provided.
Based on these fluid velocities and a series describing the full late-time concentration field,

the mean axial variation of the field was determined in closed form. The first and second-order
solutions describing this variation contain two unknown constants that arise as eigenvalues in the
series solution. These eigenvalues are the coefficients of axial dispersion and skewness. They are
determined numerically along with the solutions describing transverse variation of the concentration
field. The numerical procedure reduces the governing equations to a system of ten coupled first-order
ordinary differential equations, which are integrated in the transverse direction using a standard
integration routine.

The results presented here recover the well-known solutions for dispersion in pressure-driven
flows when the Debye length is sufficiently large. In this limit, the axial dispersion is proportional
to the square of the Peclet number based on the transverse dimension of the tube or channel and
is independent of the zeta potential. The skewness in this limit is proportional to the cube of this
Peclet number and is also independent of the zeta potential. In the limit of a small Debye layer
thickness, we find that the dispersion varies as the square of the Peclet number based on the Debye
length. The skewness varies as the cube of this Peclet number. In this limit, both the dispersion
and skewness exhibit a first-order dependence on the zeta potential. Simple approximations to the
dependence are presented. We find that increasing values of the zeta potential always reduce both
late-time dispersion and skewness.

The methodology devised here for analyzing the late-time transport in electroosmotic flow was
also applied to the Taylor problem of pressure-driven flow in a tube and channel. This analysis
yields new analytical solutions describing the axial variation of the mean solute concentration for
the problems of an initial planar source and a translating solute interface.

2.4 Hydrodynamic dispersion of a neutral non-reacting solute

in electroosmotic flow

SAND99-8249
Unlimited Release
Printed June 1999

2.4 Abstract

Analytical methods are employed to determine the axial dispersion of a neutral non-reacting solute in
an incompressible electroosmotic flow. In contrast to previous approaches, the dispersion is obtained
here by solving the time-dependent diffusion-advection equation in transformed spatial and temporal
coordinates to obtain the two-dimensional late-time concentration field. The coefficient of dispersion
arises as a separation eigenvalue, and its value is obtained as a necessary condition for satisfying
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all of the required boundary conditions. Solutions based on the Debye-Hückel approximation are
presented for both a circular tube and a channel of infinite width. These results recover the well-
known solutions for dispersion in pressure-driven flows when the Debye length is very large. In
this limit, the axial dispersion is proportional to the square of the Peclet number based on the
characteristic transverse dimension of the tube or channel. In the limit of very small Debye lengths,
we find that the dispersion varies as the square of the Peclet number based on the Debye length.
Simple approximations to the coefficient of dispersion as a function of the Debye length and Peclet
number are also presented.

2.4 Summary

Using analytical methods, we have determined the first-order concentration field and coefficient of
axial dispersion of a neutral non-reacting solute in an incompressible electroosmotic flow. Here,
in contrast to previous approaches, the dispersion is calculated by directly solving the governing
transport equations. Using a late-time series to describe the full concentration field, the coefficient
of dispersion arises naturally as a necessary condition for satisfying all required boundary conditions
in transformed spatial and temporal coordinates.

Solutions based on the Debye-Hückel approximation are presented for both a circular tube and a
channel of infinite width. These results recover the well-known solutions for dispersion in pressure-
driven flows when the Debye length is very large. In this limit, the axial dispersion is proportional
to the square of the Peclet number based on the characteristic transverse dimension of the tube or
channel. In the limit of very small Debye lengths, we find that the dispersion varies as the square of
the Peclet number based on the Debye length. Simple approximations to the dispersion as a function
of the Debye length and Peclet number are also presented.

Although dispersion in both electroosmotic and pressure-driven flows grows as the square of
the Peclet number, the coefficient of dispersion in an electroosmotic flow may be many orders of
magnitude smaller than that for the parabolic velocity profile of a pressure-driven flow. The low
coefficient of dispersion permits optimum operation of microchannel systems at very high Peclet
numbers. This minimizes the role of ordinary diffusion in electroosmotic flows, thus offering the
potential for long-range transport with little axial spreading of solute peaks or interfaces due to
either dispersion or diffusion.

In addition to providing physical insight into the nature of dispersion in electroosmotic flow, the
analytical solutions presented here provide a valuable benchmark for developing numerical solutions
to related problems. Direct numerical simulation of transport in electroosmotic flow is a challenging
task because widely disparate length scales, spanning nearly seven orders of magnitude, must be
resolved. Benchmark solutions are important in such cases since accurate numerical solutions are
difficult to obtain.

2.5 Low-dispersion turns and junctions for microchannel sys-

tems

Griffiths, S. K., Nilson, R. H., (2001) “Low-dispersion turns and junctions for microchannel systems,”
Anal. Chem., 73, pp 272–278.[17]

2.5 Abstract

Numerical methods are employed to optimize the geometry of two-dimensional microchannel turns
such that the turn-induced spreading of a solute band is minimized. An inverted numerical method
is first developed to compute the electric potential and local species motion in turns of arbitrary
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geometry. The turn geometry is then optimized by means of a nonlinear least-squares minimization
algorithm using the spatial variance of the species distribution leaving the turn as the object function.
This approach yields the turn geometry producing the minimum possible dispersion, subject only to
prescribed constraints. The resulting low-dispersion turns provide an induced variance two to three
orders of magnitude below that of a comparable conventional turns. Sample results are presented
for 180 and 90 degree turns, and the use of these turns to form wyes and tees is discussed. A sample
45 degree wye is presented. The use of low-dispersion turns in folding separation columns is also
discussed, and sample calculations are presented for folding a column 100 µm in width and up to
900 mm in length onto a region of only 10 by 10 mm. These low-dispersion geometries are applicable
to electroosmosis, electrophoresis and to some pressure-driven flows.

2.5 Summary

To quantify and remedy the dispersion occurring in turns and junctions, we have developed a
numerical model describing species transport in electroosmotic flows, electrophoretic species motion,
and species transport in some pressure-driven flows. This model is not based on traditional finite-
difference or finite-element methods. Instead, we solve the governing equations by an inverted
approach in which the dependent variables are the unknown values of the spatial coordinates and
the independent variables are the electric potential and an associated stream function describing
fluid or ion motion. The advantage of this approach is that the two-dimensional computational
domain is always rectangular; the irregular topology of the channel walls appears only as boundary
conditions on the regular computational domain. Transport in channels of arbitrarily complexity is
thus easily analyzed by this approach, with no need for adaptive meshing schemes or for re-meshing
the domain when the channel geometry is altered.

This inverted numerical model is coupled with a nonlinear least-squares minimization algorithm
used to optimize the turn geometry. The minimization object function is simply the increased spatial
variance of a species band accumulated in traversing the turn. To obtain a single optimum geometry
often requires up to one hundred realizations of species transport through candidate turns, and each
computational realization is equivalent to a single experiment. As such, it is unlikely that turns
and junctions matching the performance of those described here could be obtained by experimental
methods alone.

The resulting optimum geometries yield a turn-induced spatial variance of a sample band that is
two to three orders of magnitude below that of equivalent conventional turns. For all turn angles, the
species band emerging from the turn is nearly flat and orthogonal to the channel walls. Such turns
are useful in microchannel systems for sample preparation and other routine transport processes.
This dramatic improvement in turn-induced spreading also permits folding long separation columns
onto small areas. Using the 180 degree turn presented here, a 100 µm channel up to 900 mm long
can be folded onto a region covering only 10 by 10 mm. The turns in this configuration do not
contribute significantly to band spreading for Peclet numbers up to about 8000. For electrophoretic
processes, this corresponds to an applied electric field up to about 2000 kV/m.

The low-dispersion turns can also be used to form wyes and tees. Such junctions permit splitting
a single sample into two equal sub-samples for subsequent parallel processing. Cascading a series
of such wyes permits precise subdivision into numerous sub-samples that are are all nearly flat and
orthogonal to the channel walls. Further, all sub-samples will travel through this network at the
same mean speed and so arrive simultaneously downstream. Low-dispersion junctions may also find
use in joining sub-samples for mixing and dilution processes.

All of these low-dispersion turns and junctions are applicable to electroosmotic and electrophoretic
transport. The channels may be either open or filled with a gel or porous material. They are fur-
ther applicable to pressure-driven flows in packed or shallow channels. Finally, these low-dispersion
geometries are readily produced using existing manufacturing methods. The optimum geometries
do not rely on features very much smaller than the nominal channel width and do not require deep
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narrow channels having high aspect ratios. The channel depths are also uniform, so these geometries
can be produced using all existing molding, embossing and etching techniques.

2.6 Band spreading in two-dimensional microchannel turns for

electrokinetic species transport

Griffiths, S. K., Nilson, R. H., (2000)“Band spreading in two-dimensional microchannel turns for
electrokinetic species transport,” Anal. Chem., 72, pp 5473–5482.[15]

2.6 Abstract

Analytical and numerical methods are employed to investigate species transport by electrophoretic
or electroosmotic motion in the curved geometry of a two-dimensional turn. Closed-form analyt-
ical solutions describing the turn-induced diffusive and dispersive spreading of a species band are
presented for both the low and high Peclet number limits. We find that the spreading due to dis-
persion is proportional to the product of the turn included angle and the Peclet number at low
Peclet numbers. It is proportional to the square of the included angle and independent of the Peclet
number when the Peclet number is large. A composite solution applicable to all Peclet numbers is
constructed from these limiting behaviors. Numerical solutions for species transport in a turn are
also presented over a wide range of the included angle and the mean turn radius. Based on com-
parisons between the analytical and numerical results, we find that the analytical solutions provide
very good estimates of both dispersive and diffusive spreading provided that the mean turn radius
exceeds the channel width. These new solutions also agree well with data from a previous study.
Optimum conditions minimizing total spreading in a turn are presented and discussed.

2.6 Summary

Here we examine the spreading of a species band induced by electrophoretic or electroosmotic trans-
port through a two-dimensional turn. Analytical solutions to the governing transport equations are
obtained in the limits of low and high Peclet numbers. From these asymptotic behaviors, we con-
struct a composite solution applicable to all Peclet numbers. Numerical solutions are also presented
for a variety of turn geometries and a wide range of the Peclet number. These solutions rely on no
approximations regarding either the Peclet number or geometry of the turn.

We find that the band spreading due to transport through by a turn is well described for all
Peclet numbers by the composite solution

(σ

a

)2

=
θ2εPe
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θ + 3 εPe +

2θ

εPe
(2.1)

where σ2 is the total increased variance of the downstream species distribution, a is the mean
channel width, θ is the included angle of the turn, ε is the ratio of the channel width to the mean
turn radius, and Pe = Ua/D is the Peclet number based on the mean channel width and fluid or
species speed. The first term on the right of this expression describes the dispersive contribution to
the total variance; the second term describes the additional contribution of streamwise diffusion.

This analytical expression is based on an assumption that the radius of the turn is much larger
than the channel width. Despite this assumption, the expression provides accurate results even
when the turn radius is comparable to the channel width. Based on comparisons with our numerical
results, we find that it yields both the dispersive component and total variance to within about 10%
for all Peclet numbers, all r̄/a=1/ε≥1, and included turn angles up to 180◦.
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The dispersive portion of the turn-induced variance in the high Peclet number limit is propor-
tional to the squares of the channel width and the included turn angle, but is independent of both
the Peclet number and radius of the turn. As such, more gradual turns do not reduce the variance
when the product εPe is larger than about five times the included angle. On the contrary, large
radius turns generally increase the total variance owing to the added contribution of streamwise
diffusion. At low Peclet numbers, we find that the dispersive portion of the total variance is pro-
portional to the product θεPe. In this limit, the dispersive variance is thus inversely proportional
to the turn radius. In contrast, the total variance grows in proportion to the turn radius when the
Peclet number is small.

Based on the expression above, the total turn-induced variance exhibits a minimum between
the extremes of low and high Peclet number if the included angle of the turn is greater than about
63◦. The optimum condition defines either a preferred Peclet number for a fixed turn geometry or a
preferred geometry for a fixed Peclet number. The total variance at this minimum is about a factor
of two below the value in the high Peclet number limit for a 180◦ included angle. While this is a
significant reduction, it may not provide any real practical benefit when the Peclet number is large.
When the Peclet number is small, however, a large turn radius should be avoided to limit band
spreading by diffusion. In this case, the benefit of the optimum geometry can be very large since
diffusive spreading may far exceed that due to the turn geometry when the Peclet number is small.

Finally, this analytical expression is compared with experimental results previously obtained by
Culbertson et al. We find that the dispersive portion of the expression agrees well with their data,
provided that the mean channel width properly accounts for the channel sidewall taper.

2.7 Low dispersion turns patent summary

Inventors: Griffiths, S. K., Nilson, R. H.

The present invention improves the performance of microchannel systems by providing turns, wyes,
tees, and other junctions that generate very little dispersion of a chemical or biological sample as
it traverses the turn or junction. The reduced dispersion results from turns and junctions having
contraction and expansion regions that constrict the cross-section area in a portion of the turn or
junction . By carefully designing the geometries of the constricted portion and adjacent contraction
and expansion regions, dispersion produced by the improved turns and junctions is reduced by or-
ders of magnitude below that of conventional devices. Embodiments of the invention include: 45,
90 and 180 degree turns, wyes, and tees, as well as sample splitting devices and serpentine channels
for folding long columns into small areas .

In one embodiment, the improved turns and junctions have rectangular cross sections and a uni-
form depth, permitting straightforward fabrication by conventional etching, molding and embossing
techniques. Further, because the turns and junctions are only moderately constricted over relatively
short distances, they do not lead to excessive increases in electrical resistance and Joule heating.
This is made possible by the use of numerical algorithms to discern turn and junction geometries
that dramatically reduce dispersion by contraction and expansion regions that offset most of the
dispersion that would otherwise occur. This invention is applicable to pressure-driven chromato-
graphic separations, electrochromatographic separations and electrophoretic separations, as well as
many microfluidic processes such as routine sample transport, sample reaction and species synthesis.
It is also applicable to channels and junctions that are open, filled with a gel, or filled with a porous
or granular material.
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CHAPTER 3

Ideal electrokinesis and dielectrophoresis in
arrays of insulating posts

3.1 Abstract

Electrokinesis and dielectrophoresis, technologically important particle and fluid transport mecha-
nisms in microscale flow channels, are respectively linear and nonlinear in the electric field applied
along the channel. Experimental and computational studies have been performed in three regimes of
steady electrokinetic and dielectrophoretic particle transport in uniform square arrays of insulating
posts. At low applied electric fields, electrokinesis dominates transport and is observed to approach
“ideal electrokinesis” in which the particle and flow velocity field is irrotational outside nanometer-
scale boundary layers. At moderate applied fields, dielectrophoresis is observed to produce flowing
filaments of concentrated and rarefied particles. At high applied fields, dielectrophoresis becomes
the dominant transport mechanism and is observed to concentrate and trap particles.

Nomenclature

ε Dielectric constant of the fluid
φ Electrostatic potential
µi Electrokinetic mobility of the i-th chemical species
ν Kinematic viscosity of the liquid
νi Dielectrophoretic mobility of the i-th chemical species
ρ Density
ρe Charge density
ζ Empirical effective potential of mobile particles near an interface
ci Concentration of the i-th chemical species
ci0 Unforced equilibrium concentration of the i-th chemical species
Di Diffusivity of the i-th species in the fluid
e Charge of an electron
E Electric field
i Electric current flux vector
ji Flux vector of the i-th chemical species
k Boltzmann’s constant
p Pressure
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r Position vector
t Time
T Absolute temperature
u Velocity vector
zi Charge number of the i-th chemical species

3.2 Introduction

Electrokinesis and dielectrophoresis are two technologically important transport phenomena pro-
duced by applying an electrostatic field to a conductive fluid. Electrokinesis was first observed by
Reuss[32] in 1809 and has been studied extensively since the 19th century. Dielectrophoresis has
been studied since the seminal papers and book[27] of Pohl in the 1970’s. The current push to de-
velop microfabricated chemical and biological processing and analysis systems has renewed interest
in these phenomena.

Electrokinesis is particle or fluid transport produced by an electric field acting on a fluid having
a net mobile charge[37, 29, 34]. Net charges appear within a nanometer-scale layer at many liq-
uid/solid interfaces, e.g., water/glass, water/alumina and on many particles in solution, e.g., DNA.
Electrokinesis is significant at the microscale and is of considerable practical importance in microflu-
idics, since it provides a mechanism for manipulating particles and conveying fluids in microsystems
using only an applied electric field. The electrokinetic flow rate is linear in the electric field. “Ideal
electrokinesis” is a limiting case of electrokinesis that is approached in systems having uniform
insulating surfaces and uniform fluids. Ideal electrokinesis is irrotational with a velocity field every-
where proportional to the electric field. Ideal electrokinesis is a solenoidal transport mechanism and
consequently does not produce particle concentration gradients in an initially uniform suspension[9].

Dielectrophoresis is particle motion produced by an electric field gradient on the induced dipole
moment of a particle and surrounding fluid. The dielectrophoretic potential field experienced by a
particle is of second order in the local electric field and is proportional to the difference between the
particle and fluid polarizabilities. This transport mechanism is not solenoidal[9] and can therefore
rarefy, concentrate, and trap particles. Dielectrophoresis is used for manipulating, fusing, sorting,
and lysing biological cells[12, 4, 21, 14, 11, 22, 24]. In microsystems, it promises to provide these
functions, again, using only applied electric fields.

Insulating post arrays are particularly interesting and technologically important among mi-
crochannel geometries. For fundamental studies, they provide well defined and controlled boundary
conditions and are amenable to unit-cell analyses. In contrast, the study of flow in multiple-channel
junctions where each leg of the junction connects to an independent reservoir and electrode is com-
plicated by a number of physical effects that are mitigated within the interior of arrays. The current
flowing through each channel depends on the surface state and area of the electrodes as well as the
resistance of the channel from the electrode to the junction. Within an array this effect simply scales
the flow field uniformly, but in a multiple-channel junction it can affect the current and fluid flux
balance between channels. Furthermore, electrocapillary effects can induce pressure-driven flows
that are sensitive to trace variations in surfactant concentrations and meniscus shapes in reservoirs.
This effect is less complicated to mitigate in a two-port array than in a many-port system.

A uniform post array also provides a channel geometry in which fluid elements or suspended
particles can repeatedly experience a flow field or transport phenomenon. By repetition, a small
transport effect can be compounded into an appreciable or even dominant effect. Coherent, repeated
dielectrophoretic forcing is shown to produce flowing filaments of highly concentrated and rarefied
particles. Furthermore, the dispersion in passage time of fluid elements and particles through an
array can be increased or reduced by adjusting how or whether the flow field repeats upon passage
through the array. This ability has applications in fractionation, mixing, and filtration. Engineered
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patterned arrays promise novel categories of devices and performance advances[31, 18] over the
ubiquitous random packed bed in chemical processing and analysis.

The following sections outline the mathematical and physical description of electrokinesis and
dielectrophoresis and present experimental observations of these phenomena. In combined electroki-
netic and dielectrophoretic flows, three flow regimes are observed at low, moderate, and high applied
electric fields[9]. These regimes are respectively labeled electrokinesis, filamentary dielectrophoresis,
and trapping dielectrophoresis. The observed flow behavior is compared to simple theoretical models.
Detailed measurements of electrokinetic flow fields agree well with computed ideal flow fields. Fila-
ments of concentrated and rarefied particles are shown to align closely with ideal-flow streamlines,
an observation that enables simplified models of filamentary dielectrophoresis. Finally, trapping di-
electrophoresis is shown to concentrate and immobilize particles in dielectrophoretic traps. A simple
superposition of electrokinetic and dielectrophoretic potential fields is shown to provide a reasonable
estimate of the location and extent of these traps.

3.3 Electrostatically driven flow

Three different flow regimes typically exist for flows in which dielectrophoresis is combined with
electrokinesis or advection. Dielectrophoresis is practically absent at the lowest applied fields. This
particle flow regime is called simply “electrokinesis” or “advection,” depending on the dominant
transport mechanism.

For particle flows at high Peclet number, dielectrophoresis begins to overcome diffusion and elec-
trostatic repulsion above a threshold applied field, but cannot overcome advection and electrokinesis.
Filaments of concentrated and rarefied particles appear along flow streamlines. This flow regime is
called “filamentary dielectrophoresis.”

Above a higher threshold applied field, dielectrophoresis overwhelms advection and electrokine-
sis as well as diffusion and electrostatic repulsion. In this regime, particles are dielectrophoretically
trapped and can be concentrated nearly to solid density. This regime is called “trapping dielec-
trophoresis.”

The following sections outline mathematical and physical descriptions of electrokinesis and di-
electrophoresis.

3.3 Physics of electrokinesis

Electrokinesis is flow produced by the action of an electric field on a fluid having a net mobile
charge. The flow of the charged fluid is often called electroosmosis and the flow of bodies suspended
or solvated in the fluid is often called electrophoresis. These phenomena differ primarily by choice
of reference frame and are both called electrokinesis.

A net charge generally appears at interfaces as a result of chemical reactions, adsorption, and
other surface processes. A practical example is the interface of glass and water, in which the Si-O
bonds on the surface react spontaneously with water to form Si-OH−, immobilizing negative charges.
The immobilized charges attract counterions in the fluid. If the surface charge is high, a large
number of counterions are effectively bound ionically to the surface and are thus also immobilized.
The bound counterions screen the surface charge, lowering the attractive electric field. When the
attractive potential is comparable to the thermal energy of the counterions, Brownian collisions can
dislodge the ions from stable positions near the surface. These ions are mobile and drift under the
action of an applied electric field. The mobile ions induce electrokinesis as they exchange their drift
momentum with the other molecules of the fluid.

The characteristic electrostatic potential of the mobile counterions is a function of both the
surface and fluid composition, but ranges generally between ±10kT . This empirical potential, also
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called the ζ potential is useful for calculating the electrokinetic mobility µ of the fluid,

µ =
εζ

ρν
. (3.1)

The electrokinetic mobility of the surface is the negative of the electrokinetic mobility of the fluid.
In systems having inhomogeneous fluids and surfaces, electrokinesis is generally quite compli-

cated. The computation of electrokinetic flows can involve the full unsteady species-transport
equations (3.8) coupled to the Poisson (3.3), Navier-Stokes (3.6), and conduction (3.10) equations.
Impressively nonlinear effects including “sample stacking” and “Teorell’s oscillations[34]” can be
observed. However, many practical microfluidic devices are designed to operate with nearly uniform
fluids and contain nominally uniform insulating surfaces. Electrodes are typically placed remotely
in relatively large open reservoirs. Furthermore, the Debye length in most practical devices is much
smaller than characteristic geometrical dimensions. Such systems closely approach the requirements
for “ideal electrokinesis[7],” a dramatic simplification over general electrokinesis. Ideal electrokinesis
is irrotational, with the flow velocity given by

u(r) = µE(r), (3.2)

where the vector position r appears explicitly to indicate the local flow velocity is proportional to
the local electric field throughout the fluid. For ideal electrokinesis, it is sufficient for the electroki-
netic mobility µ to be uniform for all surfaces within the system, the surfaces to be insulating and
impervious, the Debye layer to be negligibly thin compared to channel geometrical length scales, the
fluid to be uniform, the total pressure to be balanced on all entry and exit ports, and the inflow and
outflow conditions to obey Eq. 3.2. Under these conditions, one may simply solve Laplace’s equa-
tion for the electrokinetic velocity potential. In many practical microsystems, the channel geometry
is planar or quasi-planar. The electrokinetic flow in a planar geometry is purely two dimensional,
another significant simplification used in the numerical modeling results presented later.

3.3 Physics of dielectrophoresis

Dielectrophoresis is particle motion caused by the action of an electric field gradient on an induced
dipole moment of a particle and the fluid surrounding a particle[27, 19]. The dielectrophoretic force
is of second order in the local electric field, so, unlike electrokinesis, dielectrophoresis is sensitive
to the magnitude, not the sign, of the applied field. Thus dielectrophoresis can be and typically is
driven by alternating electric fields. The results presented here employ a steady applied field.

Good analogies exist between dielectrophoresis and sedimentation in centrifugal fields. Particles
that are more and less polarizable than the surrounding liquid have respectively a positive and neg-
ative dielectrophoretic mobility, just as particles that are less and more dense than the surrounding
liquid have respectively a positive and negative buoyancy. The particles in this study have a positive
dielectrophoretic mobility. Because of similitude between the electric and velocity fields, the electric
field intensity and dynamic pressure field are proportional. The dielectrophoretic behavior in these
flows can be intuited by the analogous behavior of bubbles in the dynamic pressure gradients of the
same flow field, with viscosity scaled to match the relative drag force.

3.3 Continuum equations

The equations that describe electrostatically driven flow on continuum length scales are well known[34,
29, 27]. The relation between the electric potential, φ and the net charge density ρe in a fluid is
given by the Poisson equation,

∇ · (ε∇φ) = ρe, (3.3)



3.3. Electrostatically driven flow 25

where ε is the dielectric constant of the fluid. The net charge density is

ρe = e
∑

i

zici, (3.4)

where the summation is over all ionic components including particulates, zi and ci are respectively
the charge and concentration (number density) of the ith ionic component, and e is the unit electronic
charge.

In an equilibrium balance between electrostatic drift and diffusion,

ci = ci0 exp
(
− e ziφ

kT

)
, (3.5)

where k is Boltzmann’s constant, T is the temperature, and ci0 is the the concentration at zero
electric field. Combining Eqs. 3.3–3.5 produces the well known Poisson-Boltzmann equation that
describes the electric field and charge density in an ionic fluid near a charged interface. The Poisson-
Boltzmann equation has been analyzed extensively in a variety of interfacial geometries[37, 33]. So-
lutions of this equation show that an ionic fluid bears an appreciable net charge only in the region
immediately adjacent to a charged interface. This region, also called the Debye layer, generally
extends into the fluid O(1–100) nm. The electrokinetic flow boundary layer coincides with the
nanometer-scale Debye layer. Since microfabricated devices have length scales ranging from 1 µm
to 10 mm, the relative thinness of the Debye layer facilitates matched asymptotic analyses of elec-
trokinetic flow. In ideal electrokinesis, the Debye layer is assumed to be infinitesimally thin and is
replaced by a slip boundary condition.

The incompressible momentum and continuity equations are respectively

∂u
∂t

+ (u · ∇)u = −∇p

ρ
+ ν∇2u +

ρe

ρ
E, and (3.6)

∇ · u = 0, (3.7)

where ρ is the fluid density, ν is the fluid kinematic viscosity, and E = ∇φ is the electric field.
The electrostatic forcing term responsible for electrokinesis appears as a body force on the fluid. A
dielectrophoretic term does not appear since in a system having a single-phase fluid, dielectrophoretic
forcing, like gravity, affects only the hydrostatic pressure. Like fluid-level differences, differences in
the dielectrophoretic force at compliant or free interfaces can generate a pressure-driven flow, but
this behavior can be treated in the entry- and exit-pressure boundary conditions.

The flow systems studied contain a dilute suspension of solid particles and are not truly single-
phase. In regions where dielectrophoresis concentrates or immobilizes these particles, the fluid
viscosity, surface charge density, and even boundary location can be affected. These effects require
attention to component-specific transport within the fluid via the equations

∂ci

∂t
+ ∇ · ji = 0, (3.8)

where ji is the flux of the ith component of the fluid. When diffusion, advection, electrophoresis,
and dielectrophoresis dominate transport, an empirical relation for ji is

ji = −Di∇ci + ci[u − µiE + νi∇(E · E)], (3.9)

where Di is the effective diffusivity, µi is the electrophoretic mobility, and νi is the dielectrophoretic
mobility of the ith component. The relation of µi and νi to the physical characteristics of the particles
and ions has been studied extensively. In general, it has been found that the electrophoretic mobility
of a particle that is large compared to the thickness of its Debye layer is independent of the size
and shape of the particle[30, 25]. In contrast, the dielectrophoretic mobility increases as the square
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of the particle size[27, 19]. Generally, the dielectrophoretic flux term of Eq. 3.8 is negligible for
small molecules except within the Debye layer where electric field gradients can be 105 V/µm2.
Electric field gradients produced by photolithographically fabricated structures in microchannels
are typically limited to O(1 V/µm2) thus dielectrophoretic fluxes in microfabricated structures are
typically appreciable only for larger molecules and particles larger than O(10 nm).

Finally, charge and therefore electrical current is conserved within the fluid,

∇ · i = 0, (3.10)

where the current density i is

i = ε
∂E
∂t

+ ue
∑

i

zici − e
∑

i

Di∇ci − E e
∑

i

ziµici. (3.11)

The terms on the right side of Eq. 3.10 are the displacement, convection, diffusion, and conduc-
tion current from first to last. The coefficient of E in the conduction term is fluid conductivity.

3.4 Experimental Apparatus

Figure 3.1 shows a diagram of the microflow experimental apparatus and micrographs of flow chan-
nels filled with post arrays etched in glass. The particle-image recording system is an inverted 10×
video epifluorescence microscope with a blue light-emitting diode ring illuminator. The RS-170 out-
put of the video camera (Cohu 4910) is digitized to 8 bits by a frame grabber (Matrox Meteor) and
recorded directly to computer disk. The images are interlaced at 640×480-pixel resolution, with
each interlaced field temporally separated by 16.7 ms.

The microfluidic circuit consists of a uniform post array isotropically etched in glass with a
thermally bonded glass cover slip. Holes drilled in the cover provide access to the microchannels. The
circuit is held in place using a 16-port test fixture having gold ring electrodes and 1-ml fluid reservoirs.
The channels and reservoirs contain a uniform aqueous suspension of fluorescein-labeled 200-nm latex
nanospheres with a carboxalate-modified surface (Molecular Probes, yellow-green fluospheres). The
solution is buffered to pH 7.7 by 1-mM phosphate-buffered saline. Voltages are applied to the fixture
electrodes via a regulated power supply (HP 6236B or SRS PS350).

Pressure-driven flow produced by liquid-level differences in the reservoirs and air currents above
the reservoirs is carefully minimized. Measurements are taken within two hours of the first post-
fabrication introduction of liquid to the microsystems.

The microchannels studied have uniform square arrays of square and circular posts at different
angles with respect to the applied electric field. The channels are ∼10 µm deep. Velocity measure-
ments of electrokinetic flow fields were obtained for square posts that are 104 and 142 µm on a side
and circular posts that are 93 µm in diameter on 200 µm centers. Fluorescence images were taken
of dielectrophoresis in arrays of square posts that are 36 µm on a side and circular posts that are
33 µm in diameter on 63-µm centers.

Cross-correlation particle-image velocimetry[35, 23, 6] provided single-pixel-resolution electroki-
netic flow velocity fields from videos of 2,000 sequential 640×480-pixel interlaced images. Figure 3.2
shows a typical raw particle image from a video.

The iterative image-processing procedure used to extract velocity measurements[6] employs con-
tinuous image-shifting optimizations. The maximum particle displacement per image delay is ∼3
pixels (∼150 µm/s). Because the images are sequential, an additional optimization was performed
in which up to 32 frames are skipped between correlation pairs so that the particle displacement be-
tween correlation pairs is 1–3 pixels. This optimization is performed independently for each velocity
measurement so more frames are skipped in slow-moving regions of the flow than in fast-moving
regions, significantly extending the range of velocities that can be measured accurately.
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3.5 Results

Experiments were conducted to observe and quantify the three regimes of electrostatically driven
flow: electrokinesis, filamentary dielectrophoresis, and trapping dielectrophoresis. The electrokinetic
flow field is measured at high spatial resolution using particle image velocimetry and compared
to the calculated two-dimensional ideal electrokinetic flow fields. Particle fluorescence images of
dielectrophoretic flows are compared with calculated flow streamlines and dielectrophoretic trapping-
potential fields.

3.5 Electrokinesis

Figures 3.3–3.7 show overlays of measured electrokinetic flow speed fields and calculated two-
dimensional, ideal electrokinetic speed fields. The speed fields are presented in the form of a sim-
ulated interferogram. Lines of constant gray scale are contours of constant speed. The magnitude
of the speed at any point can be estimated with reasonable accuracy by counting and interpolating
fringes starting at the stagnation points toward the top and bottom of the posts.

The experimental data show 520-µm×390-µm-rectangular regions that are rotated so that the
mean flows are from top to bottom. The data can be distinguished from the theoretical flow
speed by its scatter and flow imperfections. The spatial resolution of the velocity measurements
is ∼0.8 µm×0.8 µm.

The agreement with theory is quite good in spite of manufacturing imperfections and the pres-
ence of agglomerated particles and surface contaminants. Flow-marking particles that agglomerate
typically have abnormal surface charge and consequently have an abnormal electrokinetic mobility.
These particles flow at different speeds from normal particles and can skew velocity measurements.
A simple image-thresholding procedure mitigates the effect of these particles at the expense of mea-
surement signal to noise. The synthetic interferograms in Figs. 3.3–3.7 sensitively display small
variations in speed, revealing residual streaks of slightly skewed speed measurements from agglomer-
ated particles. Contaminants, for example agglomerated particles stuck to channel surfaces, locally
perturb the surface charge density, violating the conditions for ideal electrokinesis. The effect of
these contaminants appears as relatively strong localized perturbations in the speed contours. The
contaminants typically produce a jet or wake that persists at most a few channel depths along the
flow. At the low Reynolds numbers in this study O(10−1–10−2) the flow rapidly recovers its irro-
tational nature following a perturbation. For this reason, one finds rotational electrokinetic flow
in microsystems only in localized regions where the conditions for ideal electrokinesis are violated,
provided the violation does not produce a global pressure-driven flow.

Figure 3.8 shows an image of the time-averaged particle fluorescence in a predominantly electroki-
netic flow from top to bottom. The fluorescence intensity is proportional to the particle concentra-
tion. Agglomerated particles produce the weak bright streaks in the otherwise uniform concentration
field between the columns. The slight rarefaction of particles along the stagnation streamlines is
attributed to a weak dielectrophoretic effect resulting from the use of finite applied electric fields,
since ideal electrokinesis does not produce concentration gradients.

3.5 Filamentary dielectrophoresis

Filamentary dielectrophoresis is observed when dielectrophoresis is strong enough to overwhelm dif-
fusion and electrostatic repulsion, but not strong enough to overcome electrokinesis or advection[9].
Flowing filaments of nearly constant particle concentration follow streamlines. Significant concen-
tration gradients can appear across streamlines. The nature of filamentary dielectrophoretic flow in
arrays depends on the orientation of the the array with respect to the applied electric field. For ex-
ample, Fig. 3.9 shows highly-concentrated filaments of particles flowing down the central streamlines
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between posts when the electric field is oriented at 45◦ with respect to post columns. In contrast,
Fig. 3.10 shows broader highly rarefied filaments flowing down columns of posts.

The relatively strong rarefaction of particles along post columns in Fig. 3.10 is the effect of
coherent reinforcement of dielectrophoretic transport down repeated rows of posts, as evidenced by
the flow at the start of the array shown in Fig. 3.11. The degree of coherent reinforcement is sensitive
to the alignment of the applied field with the post columns. At the edges of the array in Fig. 3.11,
the electric field lines are poorly aligned with the columns and the filaments are less pronounced
than along the centerline of the array.

The nature of the dielectrophoretic filaments is also sensitive to post shape. Figure 3.12 shows the
filamentary flow at the end of an array of circular posts. In this flow, apart from a slight rarefaction
immediately near the stagnation streamline (also seen in Fig. ??, particles are concentrated along
rows of posts, the opposite behavior of that in Fig. 3.10.

Figure 3.13 juxtaposes experimental particle fluorescence images with calculated streamlines and
a spectral color map of the magnitude of the electric field. In the color map, red is zero field and
blue is the highest field. The filaments are substantially aligned with the calculated electrokinetic
flow streamlines.

3.5 Trapping dielectrophoresis

At relatively high applied fields, dielectrophoresis overcomes electrokinesis, advection, diffusion, and
electrostatic repulsion to concentrate and trap particles. Figure 3.14 shows steady-state trapping
dielectrophoresis. The zones of bright fluorescence contain particles that are concentrated to near
solid density and relatively immobile. Weaker filamentary dielectrophoresis is also evident. In steady
state, the traps are filled with particles to capacity, limited by the potential well depth and extent.

The shape and depth of the trapping potential well is generally affected by perturbations of the
electrokinetic flow and viscosity by the partly and wholly immobilized particles and perturbations
of the flow boundaries. However, a simple model of the trapping potential that neglects these
complications captures the general nature of the trapped regions. The combined electrokinetic
and dielectrophoretic potential[9], µφ − ν(E · E), within an array of circular posts is overlayed in
Fig. 3.14 as a simulated interferogram where fringes correspond to isopotentials. This simplified
theory strictly applies before particle concentration gradients form. The regions on the lower left
and right of the posts where fringes begin and end on the same post are a potential well for positive
dielectrophoretic particles. Traps for negative dielectrophoretic particles also appear at the top and
bottom of the post. The number of fringes in these potential wells shows that the depth of the
negative dielectrophoretic trap is much smaller than that of the positive dielectrophoretic traps.

3.6 Conclusions

Three regimes of electrostatically driven particle transport in uniform insulating post arrays have
been observed. At the lowest applied electric fields, electrokinesis is the dominant flow mechanism.
The electrokinetic flows observed in the arrays agree well with calculations based on ideal elec-
trokinesis. At moderate applied fields, dielectrophoresis, a transport phenomenon that is nonlinear
in the applied electric field, begins to overwhelm diffusion and electrostatic repulsion between the
colloidally suspended particles. Filamentary dielectrophoresis is observed, characterized by flowing
filaments of concentrated and rarefied particles that are closely aligned with flow streamlines. Gradi-
ents in particle concentration across the filaments can be large, but gradients along the filaments are
small. At higher applied fields, trapping dielectrophoresis is observed as dielectrophoresis dominates
other transport mechanisms. Particles become highly concentrated and immobilized in zones adja-
cent to posts. In steady state, the trapping zones are filled to capacity with particles, which locally
perturb the surface charge density and viscosity, altering the electrokinetic mobility, and violating
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the conditions for ideal electrokinesis. The trapped particles also change the effective shape of the
posts. The proper numerical treatment of steady trapping dielectrophoresis is complicated and non-
linear. However, linearly superimposing the unperturbed ideal electrokinetic and dielectrophoretic
potentials produces the potential field experienced by particles before concentration gradients form.
This unperturbed field can be used as a first estimate of the steady-state trapping-potential field.

Filamentary dielectrophoresis can be coherently reinforced within a patterned array of posts. The
ability to amplify a transport process coherently within an array is novel and may enable microfluidic
devices to out-perform conventional devices that employ random packed beds.
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Figure 3.1: Diagram of the experimental apparatus for studying electrokinesis and dielectrophoresis
in microarrays. Video from the inverted epifluorescence microscope is digitized and recorded to disk.
The glass substrate containing the microfluidic channels is supported in a fixture combining a vacuum
chuck, reservoirs, and electrodes. The optical micrographs show patterned glass microchannels used
in this study.
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Figure 3.2: Raw experimental particle image used in the PIV analysis. The image spans a 520-
µm×390-µm rectangle.
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Figure 3.3: Overlay of experimental speed field on ideal electrokinetic speed field. The electric field
of 2 V/mm is applied from top to bottom, oriented down columns of 93-µm circular posts on 200-
µm centers. The fringe spacing is 24.5 µm/s. Experimental measurements occupy a rectangle that
includes the central four circular posts. The measurements can be distinguished from the ideal flow
by the presence of scatter and flow imperfections of order 2 µm/s.
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Figure 3.4: Overlay of experimental speed field on ideal electrokinetic speed field. The electric field
of 2 V/mm is applied from top to bottom, oriented at 45◦ with respect to columns of 93-µm circular
posts on 200-µm centers. The fringe spacing is 24.5 µm/s. The rectangle containing experimental
measurements is tilted by 45◦ toward the bottom left end of the image.
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Figure 3.5: Overlay of experimental speed field on ideal electrokinetic speed field. The electric field
of 2 V/mm is applied from top to bottom, oriented at 20◦ with respect to columns of 93-µm circular
posts on 200-µm centers. The fringe spacing is 24.5 µm/s.
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Figure 3.6: Overlay of experimental speed field on ideal electrokinetic speed field. The electric field
of 1 V/mm is applied from top to bottom, oriented down columns of 142-µm square posts on 200-µm
centers. The fringe spacing is 9.8 µm/s.
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Figure 3.7: Overlay of experimental speed field on ideal electrokinetic speed field. The electric field
of 1 V/mm is applied from top to bottom, oriented at 22◦ with respect to columns of 104-µm square
posts on 200-µm centers. The fringe spacing is 4.9 µm/s.
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Figure 3.8: Time-averaged particle fluorescence image of a predominantly electrokinetic flow. The
fluorescence intensity is proportional to particle concentration. The slight rarefaction at the stag-
nation streamline evidenced by the dark streak is apparently a weak filamentary dielectrophoretic
effect.



38 3. EK and DEP in arrays of insulating posts

Figure 3.9: Particle fluorescence image of filamentary dielectrophoretic flow produced by an applied
field of 80 V/mm from top to bottom, oriented at 45◦ with respect to columns of 36-µm square
posts on 63-µm centers. The fluorescence intensity variation shows strong effects of dielectrophoretic
concentration and rarefaction of particles.



3.6. Conclusions 39

Figure 3.10: Particle fluorescence image of filamentary dielectrophoresis at the end of an array.The
flow is from top to bottom produced by an applied field of 80 V/mm, oriented at ∼ 2◦ with respect
to columns of 36-µm square posts on 63-µm centers. Particles are significantly depleted along the
post columns.
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Figure 3.11: Particle fluorescence image of flow at the entrance of the square array in Fig. 3.10. The
amount of rarefaction grows as the flow passes repeatedly past rows of posts.
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Figure 3.12: Particle fluorescence image of filamentary dielectrophoresis at the end of an array. The
flow is from top to bottom produced by an applied field of 25 V/mm oriented down columns of 33-
µm circular posts on 63-µm centers. The fluorescence intensity variation shows the dielectrophoretic
concentration of particles in the region along the post columns.
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Figure 3.13: Particle fluorescence image and calculated ideal electrokinetic streamlines and electric
field magnitude (indicated by a spectral color map: blue corresponds to high field). The concentra-
tion of filament is nearly constant along streamlines but varies significantly across streamlines.
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Figure 3.14: Particle fluorescence image of dielectrophoretic trapping. The flow is from top to
bottom produced by an applied field of 100 V/mm down columns of 33-µm circular posts on 63-
µm centers. Regions of trapped particles emit intense fluorescence. The overlayed image shows a
simplified model of the potential experienced by particles. Regions where isopotentials curve back
onto a post are dielectrophoretic traps.



44

This page intentionally contains only this sentence.



45

CHAPTER 4

A PIV methodology for high-resolution
measurement of flow statistics

4.1 Abstract

Particle-image velocimetry (PIV) is a flow-diagnostic technique that provides velocity fields from
a comparison of correlated images of particulate-laden flow. We have developed a PIV processing
methodology that extracts measurements of the particle-displacement histogram from a flow video
or ensemble of flow-image pairs. Single-pixel measurement of mean velocity can be obtained from an
ensemble of O(103) images. Measurements of higher-order moments of the velocity histogram require
spatial averaging (i.e., lower spatial resolution), larger ensembles of images, or a combination of the
two. We present single-pixel-resolution PIV measurements of a steady microflow and high-resolution
measurements of the velocity histogram and two-point velocity correlations of a stationary turbulent
flow. This methodology has applications in quantifying velocity statistics in other stochastic flows,
e.g., bulk and near-wall boiling.

Nomenclature

A amplitude parameter
α, β semi-major and semi-minor axes of the elliptical Gaussian velocity histogram
D effective particle diffusivity
∆ t time delay between subimages in correlation pair
δx, δy Cartesian independent variables of the filter basis function
δx′, δy′ independent variables of the filter basis function rotated into the frame of the eccentricity

vector
e eccentricity vector of the elliptical Gaussian velocity histogram
ex, ey Cartesian components of the eccentricity vector
P{δx, δy} histogram of particle displacement (nonlinear filter basis function)
σ mean half-width of the velocity histogram
u, v Cartesian components of the electrokinetic velocity vector
u0, v0 Cartesian components of the mean velocity vector
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4.2 Introduction

Particle-image velocimetry (PIV) is a standard technique for quantifying flow-velocity fields. In
PIV, the velocity field is measured by comparing the locations of particles or groups of particles
in images of a particulate-laden flow. Often this comparison is performed using image-correlation
techniques. In this article we report on extensions of the correlation-based PIV technique to obtain
high measurement spatial resolution and the ability to measure single and multiple-point velocity
statistics accurately and efficiently. These extensions employ ensemble averaging of correlations over
a large number flow images. Correlation averaging in PIV is a relatively new procedure [23, 10, 6]
which allows the experimentalist to trade between spatial resolution, temporal resolution, and signal-
to-noise ratio (SNR) or measurement accuracy. This flexibility is particularly useful in microsystems,
where the spatial resolution of flow images is limited by diffraction. We present single-pixel-resolution
measurements of steady electrokinetic flow velocities in microchannels[8].

Correlation averaging can also be used to measure flow statistics in stationary1, but unsteady,
flows. We present single-pixel resolution measurements of velocity histograms at the mid-plane of
a circular jet with co-flowing air at Reynolds number 6,100. The procedure of single-pixel correla-
tion is particularly simple and minimizes issues of gradients within the subimage that can distort
measurements. The disadvantage of single-pixel correlation is that a large number of flow images
must be processed to obtain a useful SNR. For example, in a steady flow, 1024 image pairs must
be processed to obtain a single-pixel correlation similar to a 32×32-pixel subimage correlation of a
single frame pair. A factor of 10–1000 more image pairs are required for measuring flow statistics in
an unsteady flow. Fortunately, with a processing rate on a standard workstation of ∼1 frame pair
per second for a 1024×1024-pixel image, ensembles of O(104) and even O(105) images are practical.

4.3 Processing procedure

The methodology used in this study to obtain high-resolution velocity histograms has been pub-
lished elsewhere [6]. This methodology involves image pre-processing followed by an iterated se-
quence of cross correlation, correlation processing, nonlinear filtering to extract measurements, and
measurement-grid refinement. The pre-processing phase minimizes sources of velocity bias by back-
ground subtraction, flat-field correction, etc. The cross correlation and correlation-processing steps
are conducted as in standard PIV. However, the image auto-correlations are also calculated and ulti-
mately used to deconvolve imaging defects, blur, and finite-particle-size effects from the correlations.
Following the correlation processing, the correlation field can be related to a velocity histogram. By
ensemble averaging over many image pairs, an accurate velocity histogram is constructed without
the need for large amounts of spatial averaging in the form of large subimages. The method of
single-pixel correlation is unconventional and will be discussed in the next section.

Flow measurements are extracted from these histograms via an optimal nonlinear filter. This
filter is a nonlinear least-squares fit of the experimentally obtained histograms to a basis function of
the filter having a number of adjustable parameters. The best-fit parameters are the measurements
extracted from the histograms, e.g., mean velocity, variance, etc. The filter is optimal when the
basis function of the filter properly matches the functional form of the histogram and its dependence
upon the adjustable parameters. Different basis functions are presented to account for the different
physics of the two flows in this study.

1A stationary flow, which has constant mean properties, is distinct from a steady flow, which has constant instan-
taneous properties.



4.3. Processing procedure 47

4.3 Single-pixel correlation

In PIV, image correlation is usually performed using the Fourier convolution theorem because of
the computational speed of the fast Fourier transform. This transform adds an artificial velocity
ambiguity, since it incorrectly treats the image data as spatially periodic. One means to remove this
ambiguity by padding one of the subimages of a pair with null pixels to twice its original size in
the row- and column-wise directions before convolving with the other subimage. The measurement
resolution is limited by the size of the original un-padded subimage, i.e., measurements that are
separated by one un-padded subimage size are independent. The size of the correlation field and
hence velocity histogram is set by the size of the padded subimage. By using different amounts
of padding, the measurement resolution and histogram width can be varied independently. Taking
this procedure to a logical limit, it is possible to pad a single-pixel subimage to a desired histogram
width and perform a “single-pixel correlation.”

The signal-to-noise ratio (SNR) of a single-pixel correlation from a single image pair is signif-
icantly less than unity and must be improved by ensemble averaging in order to obtain a useful
measurement. Figure 4.1 shows the effect of averaging on 16×16-pixel velocity histogram measure-
ments obtained from single-pixel subimages of a turbulent flow. The curves show the histogram of
u−u0 at v = v0, where u and v are respectively the row- and column-wise velocities and the subscript
‘0’ denotes the mean value. The top family of curves was measured from a low-turbulence region.
The 103- and 104-image-pair averaged histograms are similar, implying the histogram has converged
acceptably at 103 averages, analogous to using ∼ 32×32-pixel subimages in a single-frame-pair cor-
relation. The 102- and 103-frame-pair averages have significant differences and the 10-frame-pair
and single-frame-pair histograms are completely invalid. The family of histogram measurements at
the bottom of Fig. 4.1 was measured from a relatively turbulent region of the same flow. The 103-
and 104-frame-pair averages are significantly different, indicating the need for > 103 image pairs for
performing such measurements in turbulent regions.

The use of a single-pixel subimage eliminates issues of velocity gradients across the subimage and
allows the full measurement resolution permitted by the imaging system to be realized. Furthermore
the single-pixel correlation procedure degenerates to multiplying each pixel of the second subimage
by the value of the single pixel, a computationally and algorithmically efficient procedure.

4.3 Multiple-point correlations

Multiple-point velocity fluctuation correlations provide a statistical measure of the coherence length
scale of turbulent eddies. To date these correlations have been obtained only by the use of multiple
time-correlated single-point measurements and have been of limited utility because of the limited
amount of data about a flow that is practical to obtain using this serial technique. We have developed
and implemented an algorithm for quantifying multiple-point correlations that employs correlation
averaging similar to that described earlier. Instead of averaging the cross correlation of subimages
from an ensemble of image pairs, the results of a correlation (or correlations) between the cross
correlations of a “reference” and one (or more) “comparison” subimages are averaged. This has been
implemented as a procedure several steps. For a two-point correlation between a single reference
subimage and a range of comparison subimages, these steps are:

1. Select a reference subimage. The velocity within this subimage will be correlated with subim-
ages in the rest of the image or within a selected range from the reference subimage.

2. Set the current image pair to the first image pair in the data set.

3. Clear (initialize with zero values) the two-point correlation arrays of all comparison subimages.

4. Cross correlate the reference subimage in the current image pair.
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5. Deconvolve this cross correlation by the average autocorrelation of the subimage. Note that if
the signal-to-noise ratio of the image is not sufficiently high, the autocorrelation must be first
filtered to remove the strong noise coherence spike at the origin.

6. Reset the index that enumerates the current comparison subimage.

7. Cross correlate the indexed comparison subimage.

8. Deconvolve this cross correlation by the average autocorrelations of the subimage, again, with
proper attention to avoid any noise spike at the origin of the autocorrelation.

9. Cross correlate the resulting correlations for the reference and comparison subimages, produc-
ing a double correlation.

10. Add this correlation to the two-point correlation array of the current comparison subimage.

11. If not done with the last comparison subimage, increment the comparison subimage index and
go to step 7; otherwise continue.

12. If not finished with the last image pair in the data set, advance to the next image pair and go
to step 4; otherwise continue.

13. The two point correlation is complete for all comparison subimages. Perform additional nor-
malization by the single-point correlations, if desired.

14. Process the resulting correlations using a nonlinear filter to extract measurements, if desired.

The computational burden of performing this double correlation for a single reference subimage is
practically the same as that for cross-correlating and deconvolving all of the comparison subimages.
Thus, this algorithm does not scale favorably for systematically performing two point correlations
from each subimage in a flow to each other subimage. Moreover, the data storage requirements
for such a procedure also scale poorly. However, this technique does provide a unique method of
quantifying the spatial coherence behavior of flows.

4.4 Steady electrokinetic flow in uniform post arrays

Electrokinesis is the flow produced by the action of an electric field on a fluid or immersed particle
having a net mobile charge. Net charges appear within the nanoscopic Debye layer of many liq-
uid/solid interfaces, e.g., water/glass, water/alumina and on many particles in solution, e.g., DNA.
This flow achieves significance at the microscale and is of considerable practical importance in mi-
crofluidics, since it is a mechanism for manipulating particles and conveying fluids in microsystems
using only an applied electric field. The flow rate is linear in the applied field. Furthermore, electroki-
netic flow in systems with uniform insulating surfaces and uniform solutions is irrotational with a
velocity field everywhere proportional to the electric field. Diffraction-limited, single-pixel-resolution
optical diagnostics are often marginal for detailing electrokinesis in real microsystems. The systems
chosen for this study are microchannels packed with uniform arrays of posts. Flow in such arrays is
amenable to analysis and potentially useful for chemical and particle separations.

4.4 Basis function for the nonlinear filter

The basis function of the nonlinear filter is derived assuming the flow is uniform from the top of
the channel to the bottom, as in ideal electroosmosis in a planar system [7]. All marker particles
are assumed to have the same electrokinetic mobility and diffusivity. The electrokinetic velocity
distribution in the absence of diffusion is a delta function at the mean-flow velocity. When diffusion
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is present, the velocity distribution spreads into a Gaussian shape. The basis function used in the
nonlinear filter is

P{δx, δy} = A exp

(
− [δx − u ∆ t]2 +

[δy − v ∆ t]2

D ∆ t

)
, (4.1)

where P{δx, δy} is the histogram of particle displacement through (δx, δy), A is an amplitude scale
that can vary across the image. The parameters u and v are the mean electrokinetic velocity
components in the row-wise and column-wise directions and D is the effective diffusion coefficient
of the particles. The time delay between frames, ∆ t, can also vary across the image as a result
of optimizations. Parameters A and D can only take positive values. This range is ensured by
using their logarithms in the external parameter set adjusted by the nonlinear filter. Thus the
adjustable parameters of the basis function are u, v, log(A), and log(D). The particle diffusivity D
is practically constant across the flow. The value of this parameter is initially allowed to be adjusted
by the nonlinear filter. The diffusivity field is then fixed at the mean value obtained from the filter
in the initial measurement. Thus the filter is given three degrees of freedom: u, v, and log(A).
If the assumptions made in the development of this basis function are rigorously valid and there
are no additional complications, such as pressure-driven flow, the filter is optimal. In reality, there
are variations in the electrokinetic mobility of the particles that elongate the particle-displacement
histogram in the direction of the mean displacement, among other complications. Nevertheless, this
basis function usually performs well and has the advantage of simplicity.

4.4 Experimental apparatus

Figure 4.2, the same as Fig. 3.1 in the previous chapter, is repeated here for convenience. This
figure shows a diagram of the microflow experimental apparatus and micrographs of flow channels
filled with post arrays etched in glass. The particle-image recording system in the electrokinetic flow
experiments is an inverted 10× video epifluorescence microscope with a blue light-emitting diode
ring illuminator. The RS-170 output of the video camera (Cohu 4910) is digitized to 8 bits by a
frame grabber (Matrox Meteor) and recorded directly to computer disk. The images are interlaced
at 640×480-pixel resolution, with each interlaced field temporally separated by 16.7 ms.

The microfluidic circuit consists of a uniform post array isotropically etched in glass with a
thermally bonded glass cover slip. Holes drilled in the cover provide access to the microchannels. The
circuit is held in place using a 16-port test fixture having gold ring electrodes and 1-ml fluid reservoirs.
The channels and reservoirs contain a uniform aqueous suspension of fluorescein-labeled 200-nm latex
nanospheres with a carboxalate-modified surface (Molecular Probes, yellow-green fluospheres). The
solution is buffered to pH 7.7 by 1-mM phosphate-buffered saline. Voltages are applied to the fixture
electrodes via a regulated power supply (HP 6236B or SRS PS350).

The microchannels studied have uniform square arrays of square and circular posts at different
angles with respect to the applied electric field. The channels are ∼10 µm deep. The square posts
are 142 µm on a side on 200 µm centers. The circular posts are 93 µm in diameter on 200 µm
centers.

Care was taken to eliminate pressure-driven flow produced by liquid-level differences in the
reservoirs and air currents above the reservoirs. Applied electric fields were kept low enough to
avoid particle dielectrophoresis.

4.4 Results

Videos of 2,000 sequential interlaced images with 640×480 pixels were processed to obtain indepen-
dent speed measurements at each image pixel. Figure 3.2 in the previous chapter shows a typical
raw particle image from a video. The maximum particle displacement per image delay is ∼3 pix-
els (∼150 µm/s). Because the images are sequential, an additional optimization was performed
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in which up to 32 frames are skipped between correlation pairs so that the particle displacement
between correlation pairs is 1–3 pixels [6]. This optimization is performed independently for each
velocity measurement, so more frames are skipped in slow-moving regions of the flow than in fast-
moving regions, significantly extending the range over which velocities can be measured accurately.
Figures 4.3–4.6 show measured electrokinetic flow fields. The flow fields are presented in the form of
a simulated interferogram. Lines of constant gray scale are contours of constant field. The magnitude
of the field at any point can be estimated with reasonable accuracy by counting and interpolating
fringes.

Figure 4.3 shows the measured speed field in a circular post array oriented at 45◦ with respect to
the applied field of 2 V/mm. The flow is from the lower left to the upper right. The fringe spacing
is 24.5 µm/s. The speed field throughout the flow can be inferred by counting fringes starting from
zero at the stagnation regions in the lower-left and upper-right surfaces of the posts. The streaking
patterns that cross the fringes are produced by agglomerated particles having an abnormal surface
charge and consequently moving slower or faster than the others. These streaks, which follow flow
streamlines, can be eliminated by thresholding the video images to remove the contributions from
particles that are significantly brighter than the average particle. In the measurements shown, the
threshold was set to retain some streaking in the image and provide more context for understanding
the flow from the figures.

Figure 4.4 shows flow in a similar array of circular posts oriented at 22.5◦ with respect to the
applied field of 2 V/mm.

Figure 4.5 shows u, the row-directed component of the velocity in an array of square posts with
channels that are aligned with the electric field of 1 V/mm applied from left to right. The flow slows
as it expands into a junction and accelerates as it leaves the junction. The inset expanded image
shows the resolution of the flow measurements in the upper right junction. The size of a pixel is
indicated by the white square toward the lower right of the inset image.

Figure 4.6 shows the speed field in an array of square posts at 45◦ with respect to the applied
electric field. The expanded image shown in the inset shows how well the technique works at resolving
the speed increase in the region of the sharp post tip. The blemish in the speed field evident in the
upper-right channel is real, produced most likely by a localized surface contaminant.

4.5 Stationary turbulent circular jet

Experimental studies of turbulent flows are often conducted for validating numerical submodels and
codes. Conventionally, point-measurement techniques like laser-Doppler or hot-wire anemometry are
used to obtain turbulent velocity histograms, while imaging techniques like particle-image velocime-
try are used to obtain “snapshot” measurements of a flow. While spatial scanning can improve the
utility of point measurements, the lack of flow context for the measurements and the typical sparse-
ness of the data can be serious shortcomings. While repetition can improve the utility of snap-shot
imaging techniques, spatial resolution is often a shortcoming. Furthermore, it is generally unclear
how to present experimental results based on a limited number of snap-shots in a format that is
suitable for quantitative model validation.

Image-correlation processing and averaging can be used to obtain velocity correlations and statis-
tics with high spatial resolution. The conventional method of obtaining velocity statistics by particle-
image velocimetry is to make independent velocity measurements from a large number of image pairs
[13, 20]. This method requires the use of large subimages for correlation to obtain reliable velocity
estimates for each image pair. Each image-pair contributes the (estimated) most-probable velocity
within the subimage to the histogram. Unfortunately, if a range of velocities is present within the
subimage, e.g. if the subimage does not resolve a small-scale turbulent eddy, the information about
the velocity distribution other than the most-probable velocity is discarded. Thus the velocity field
should be uniform across a subimage, significantly limiting the range of turbulent length scales that
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can be properly probed. In contrast, the image-correlation processing and averaging methodology
used in this experimental study superimposes estimates from each image pair of the complete ve-
locity distribution within the subimage. The signal-to-noise ratio (SNR) of each individual estimate
can be well below unity, since the SNR of the distribution increases as the square root of the number
of image pairs in the ensemble. Small, even single-pixel, subimages can be used in the correlation,
provided the ensemble is sufficiently large. Furthermore, if multiple-pixel subimages are used, all
velocities within the subimage contribute in the correct proportion to the histogram. Thus the
velocity-distribution measurement is valid provided only that the flow statistics are uniform across
the subimage.

4.5 Basis function for the nonlinear filter

Unlike the previous basis function, there is no simple general form of a turbulent velocity histogram.
However, it was observed that the velocity distributions measured in the jet appeared to have a single
peak with an ellipsoidal Gaussian flavor. The eccentricity, orientation, and length of the minor axis
of the peak varies throughout the flow. A basis function was chosen to quantify these parameters
for comparison with existing data and numerical models. The basis function is

P{δx, δy} = A exp

(
−
[

δx′ − u0 ∆ t

α∆ t

]2

−
[

δy′ − v0 ∆ t

β∆ t

]2)
, (4.2)

where, u0 and v0 are the mean velocity components in the x- and y-directions, respectively, and

α ≡ σ + ||e||, (4.3)
β ≡ σ2/(σ + ||e||). (4.4)

The parameters α and β are the lengths of the semi-major and semi-minor axes of the ellipse. These
parameters are derived from σ, the effective half-width of the Gaussian ellipse, and the modulus of
the eccentricity vector, e, of the ellipse. The variables δx′ and δy′ are derived from δx and δy and
e via

δx′ ≡ ex δx + ey δy

||e|| , and (4.5)

δy′ ≡ ey δx − ex δy

||e|| , (4.6)

where ex and ey are the components of the eccentricity vector in the x- and y-directions, respectively.
Again, parameters that can range from (0,∞), i.e., A and σ, are mapped to external parameters that
can range from (−∞,∞) by taking logarithms. This mapping reduces stiffness and other difficulties
with the numerical filter. The external parameters of the basis function are log(A), u0, v0, log(σ),
ex, and ey. The external parameters of the same function may be expressed in a variety of different
ways, e.g., in polar rather than Cartesian coordinates. However, the numerical implementation of
the optimal nonlinear filter is more robust with this choice of parametrization than others that were
attempted.

4.5 Experimental apparatus

The turbulent flow that was studied consists of an axisymmetric, central air jet surrounded by a
low-velocity co-flowing air stream. The central jet tube has a 5.3-mm inside diameter and a 6.8-
mm outer diameter. The straight jet tube is 1-m long, which ensures a fully-developed turbulent
pipe flow velocity distribution at the jet exit. The outer co-flowing air stream has a 75-mm outer
diameter, and passes through a honeycomb section to produce a uniform laminar flow.
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The central-jet bulk velocity is 18.2 m/s, giving a Reynolds number based on the jet exit diameter
of 6,100. The co-flowing air velocity is 0.96 m/s. Bulk velocity of the fuel jet was determined from
the measured volumetric flow rates and the internal area of the jet nozzle. The gas-flow rate of the
central jet and the co-flow are metered by mass-flow controllers to an accuracy of 2%.

The PIV system uses the output of a double-pulsed Nd:YAG laser (Spectra Physics PIV-400,
400 mJ/pulse at 532 nm) to illuminate seed particles added to the flow. The beam is formed into a
75-mm high laser sheet approximately 250-µm thick by cylindrical optics and subsequently passed
through the test section. Mie-scattered light from the seed particles is collected by a 105-mm focal
length, f2.8 camera lens and detected using a CCD video camera with a 1024×1024-pixel array (TSI
Model 630045 Cross-correlation Camera). Particle images illuminated by the two laser pulses are
recorded on sequential video frames using a frame-straddle technique. The particle displacement
between a pair of images is ∼10 pixels at the maximum velocity. The field of view of the images is
49×49 mm, providing a resolution of 48 µm/pixel. A 10-nm bandwidth interference filter centered
at the laser wavelength of 532 nm placed in front of the collection lens eliminates background room
light.

Seed particles in the both the fuel jet and co-flowing air were supplied by a fluidized-bed seeder.
The seed particles are nominally-300-nm ceramic Zeeospheres manufactured by the 3M Corporation.
Calculations show that this size is sufficiently small for the particles to accurately follow the gas
flow at the flow conditions studied. Cyclone separators located downstream of the seeders remove
particle agglomerates and improve the particle-size uniformity.

4.5 Results

An ensemble of 14,500 image pairs of this turbulent flow was processed to obtain independent
velocity histograms at 8×8-pixel and single-pixel resolutions. The mean speed fields measured at
the lower and higher spatial resolution are shown in Figs. 4.7 and 4.8, respectively. The peak speed
is ∼ 18.2 m/s or ∼ 10 pixels per frame at the base of the jet. The correlation window size in the
single-pixel analysis is 8×8 pixels, allowing velocity fluctuations of ±4 pixels per image delay to be
recorded.

Figure 4.9 shows the variance and peak-correlation-amplitude fields across the flow. As expected,
the variance is largest at the edge of the base of the jet. The potential core of the jet disappears
about two exit-diameters downstream of the nozzle. The peak correlation amplitude decreases by
an order of magnitude from the ambient air to the center of the jet because of the combined effect
of the higher variance and increased out-of-plane particle motion in the jet.

Figure 4.10 shows the components ex and ey of the eccentricity vector, e, where the x- and
y-directions are aligned with the rows and columns, respectively. The full scales of the variation
of these parameters is less than a pixel in these measurements, i.e., the ellipsoidal correlation peak
is elongated by less than a complete pixel. The measurement could be made less noisy by using a
longer time delay between images at the cost of spatial resolution or by using a larger ensemble of
images at the cost of increased processing and experiment duration.

The eccentricity fields in Fig. 4.10 contain a systematic error. Figures 4.7 and 4.8 show that
the mean-velocity gradients at the base of the jet are too large for the approximation of uniform
properties across an 8×8-pixel subimage made in deriving the filter basis function (4.2). A velocity
gradient across the subimage appears as an artificially increased eccentricity vector in the direction of
the mean flow. To remove this artifice, the analyst could either use smaller subimages at the expense
of SNR, revise the filter basis function to accommodate velocity gradients, or post-process the
eccentricity field using the measured velocity field. The post-processing procedure is possible because
of the simple form of the velocity-gradient effect on eccentricity vector and variance measurements.

Figure 4.11 shows color maps of the width of the two point correlation peak from different
reference subimages. The reference subimage is located at the center of the red spot in each image,
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corresponding to the correlation-peak-width minimum. This is an indication that the reference
subimage is most strongly correlated with itself, as expected. The dip in the correlation width
that is apparent in the region surrounding the reference image shows that the flow loses spatial
coherence over a finite and even sizable region. Moreover, this procedure quantifies this zone of
partial coherence, allowing comparison with simulations. The zone of partial coherence can be
intuited as a measure of the effective “shape” of turbulent eddies in a region.

4.6 Conclusions

Particle image velocimetry can be applied to obtain high-spatial-resolution and high-accuracy veloc-
ity statistics of stationary but not necessarily steady flows. Accurate single-pixel-resolution velocity
measurements of a steady flow can be made by ensemble averaging the correlations of O(103) image
pairs. Accurate measurements of velocity histograms can be made of a turbulent flow given a data
set with O(104–105) images, with the lower and upper range sufficient for 8×8-pixel and single-pixel
subimages, respectively. The storage and processing requirements for this size of data set are no
longer prohibitive or particularly challenging. A more-serious problem is the need to maintain a
stationary flow for O(10) hours to record the image set using standard high-resolution PIV cameras
which can typically record only O(1) image-pair per second. Given the ability to make single-pixel
measurements, experimentalists may reconsider the need for megapixel and multi-megapixel cameras
with relatively low data throughput.

The statistical measurement capabilities of PIV could be used to study other flow phenomena
having a strong stochastic component, such as boiling and natural and forced convection. Snap-shot
PIV has been applied to develop an understanding of the role of vortex and jet motion on wall heat
transfer [28]. Statistical PIV methods promise to extend this understanding and provide data in a
format suitable for computational model validation.

The potential for sub-micrometer resolution of velocity histograms makes it possible to study
these phenomena at the microscale, providing a new window into fundamental heat-transfer. The
need for particle seeding can be troublesome for some boiling studies, since particles serve as bubble
nucleation sites and can thus perturb the flow behavior. However, the seeding density, size distribu-
tion, and hydrophilicity of the particle markers can be tailored to mimic those of particles that are
intrinsic to a practical boiling system. Commercially available fluorescent latex microspheres that
we have tested are not stable at the atmospheric boiling point of water, thus either Mie-scattering
particles or improved fluorescent markers may need to be employed.

Finally, multiple-point correlation fields have been measured using a correlation-averaging tech-
nique, providing a clear window into flow coherence that had previously only been viewed through
the keyhole of point measurements. A similar double-correlation methodology can be generally
employed to measure components of the velocity gradient tensor.
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Figure 4.1: Experimentally measured velocity histograms from single-pixel subimages in a turbulent
flow vs. the number of frame-pair correlations. The curves at the top and bottom were obtained in
low- and high-turbulence regions, respectively.



4.6. Conclusions 55

Figure 4.2: Diagram of the experimental apparatus for studying electrokinetic flow in microarrays
and micrographs of patterned glass microarrays.
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Figure 4.3: Electrokinetic speed field within an array of circular posts at 45◦ with respect to the
applied electric field. The fringe spacing is 0.5 pixels per image delay (24.5 µm/s).
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Figure 4.4: Electrokinetic speed field within an array of circular posts at 22.5◦ with respect to the
applied electric field. The fringe spacing is 0.5 pixels per image delay (24.5 µm/s).
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Figure 4.5: Electrokinetic u velocity field in an array of square posts at 0◦ with respect to the electric
field applied from left to right. The fringe spacing is 0.2 pixels per image delay (9.8 µm/s). The
inset image show a detail of the flow in the upper-right junction. The white rectangle in the inset
shows the size of a single pixel.
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Figure 4.6: Electrokinetic speed field within an array of square posts at 45◦ with respect to the
applied electric field. The fringe spacing is 0.5 pixels per image delay (24.5 µm/s). The inset image
shows a detail of the flow in the upper right junction.
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Figure 4.7: Color map and simulated interferogram of the mean speed field in the turbulent jet
measured with 8×8-pixel subimages. Red corresponds to zero speed and blue corresponds to 10
pixels displacement between images.



4.6. Conclusions 61

Figure 4.8: Color map and simulated interferogram of the mean speed field in the turbulent jet
measured with single-pixel subimages. Red corresponds to zero speed and blue corresponds to 10
pixels displacement between images.
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Figure 4.9: Color map and simulated interferogram of the components of the effective variance (σ)
and peak correlation amplitude (A) measured with 8×8-pixel subimages. The color-map ranges and
fringe spacings are indicated beneath the images. The units of the variance are pixels per image
delay and the units of the amplitude are arbitrary.
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Figure 4.10: Color map and simulated interferogram of the components of the eccentricity vector
measured with 8×8-pixel subimages. The color-map ranges and fringe spacings are indicated beneath
the image in units of pixel per image delay.
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Figure 4.11: Color map of the Gaussian two-point correlation width from six different reference
locations. The reference locations are located at the centers of the pronounced red spots in each
image, corresponding to a small correlation width. The dip in the correlation width surrounding the
reference point is evidence of the geometry of eddies near the reference region.
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CHAPTER 5

Laplace: a general-purpose ideal EK flow
simulator

5.1 Abstract

The software application Laplace is a general-purpose ideal EK flow simulator written to sup-
port fundamental EK theory development, experimental data interpretation, device simulation,
and rapid evaluation of device concepts. The software solves the modified Laplace equation ∇ ·
(h(x, y)∇φ(x, y)) = 0 for the velocity/electrostatic potential φ on a quasiplanar domain that is spec-
ified in a bitmapped image file through the field h. The “height” of the flow domain, h(x, y), is
proportional to the 8-bit value of the blue channel of the image. This form of the Laplace equation
properly handles both interior and boundary points. The software automatically enumerates ports
where channels intersect the boundary of the image and solves for a basis set of solutions corre-
sponding to each port individually held at unit potential while all others are held at zero potential.
From this basis set a particular solution for a given set of applied potentials is constructed by su-
perposition for simulation of particle trajectories and other post processing. To assist in studies of
flow in uniform arrays, the software has a special mode which automatically constructs the array
image and solves for periodic boundary conditions. Post-processing operations allow simulation of
particle motion with diffusion, electrophoresis, and dielectrophoresis.

Nomenclature

(i, j) Integral Cartesian coordinate pair
n Index of a component of the solution vector
h The height of the channel
φ The solution of the Laplace equation, identified as a “potential”
ŝ The unit vector along a streamline
n̂ The unit normal vector of a boundary surface
φ,ij Second order (i = j) and mixed (i �= j) derivatives of the potential: components of the

deformation-rate tensor
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5.2 Introduction

While a variety of analytical solution techniques are available for the Laplace equation that describes
ideal EK flows, many of these techniques work easily only on simple geometries and do not lend
themselves to general design and optimization work. Moreover post processing of the solution to
obtain properties of interest like dispersion, streamlines, streaklines, and scalar transport is critical
in evaluating designs but is not readily supported by even closed-form analytical solutions. The
need for a general purpose ideal electrokinetic flow simulator is evident. The software application
Laplace was written to fill this need.

Laplace is a general-purpose ideal EK flow simulator for arbitrary quasi-planar flow-channel
geometries. The finite-difference computational grid is constructed directly from a bitmapped image
of the desired flow geometry in which the eight-bit level of the blue component of the image at a
pixel is proportional to the height of the the channel, h, at the pixel location. A value of 0x00
corresponds to a channel of zero height, i.e., a wall and a value of 0xFF (255) corresponds to a
channel of the maximum height. Laplace solves the modified Laplace equation

∇ · (h(i, j)∇φ(i, j)) = 0 (5.1)

for the velocity/electrostatic potential φ across the image, given the channel height field h(i, j) at the
discrete pixel locations (i, j) of the bitmapped image. This equation is easily shown to be compatible
with both the insulating boundary equations

∇φ · n̂ ∝ ∇φ · ∇h = 0 (5.2)

and the interior equations
∇2φ ∝ h∇2φ = 0 (5.3)

for the Laplace equation in a purely planar geometry and is simply a statement of depth-averaged
continuity in a purely two-dimensional flow. This solution is an exact discretization for ideal elec-
trokinesis provided the depth of the channel does not vary along any streamlines, i.e., ∇h · ŝ = 0
everywhere. It a good approximately in regions where the depth varies slowly along a streamline,
i.e., ∇h · ŝ/h << 1. It is also a good approximation in regions located many channel depths away
from an abrupt depth change along a streamline.

Discretizing the flow in this manner has several advantages.

1. No special handling of boundaries is inherently required.

2. Channel geometries can be specified easily using drawing programs, CAD programs, and flu-
orescence images of dye in actual channels

3. Channels having multiple depths can be treated approximately.

4. Natural (in the case of fluorescence images) or synthetic (in drawing software) “anti-aliasing”
and defocus can be used to eliminate sharp discontinuities on boundary edges and smooth the
effects of cartesian discretization on curved boundaries.

5. Simple algorithms exist for grid refinement to speed and de-stiffen solutions.

Figure 5.1 shows a 606×585 pixel image of a sample channel design sketched using a drawing pro-
gram. The image has only black and white pixels, so curves are approximated discretely as abrupt
steps. Figure 5.2 shows the same image with an anti-aliasing algorithm applied to use gray-scales to
smooth the edges of curves. Figure 5.3 shows the same image with a blur applied to round the corners
and produce smoothly varying channel depths. This particular blur simulates the effect of isotropic
etching of a stamp on an embossed microchannel. Figure 5.4 shows a comparison of closeups of the
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curve at the upper left in Figs. 5.1–5.3. The use of the “grayscale” approach to handling bound-
aries mitigates the artifacts of the discretization of the boundary on the flow/electric field solution.
Figure 5.5 shows a comparison of the speed fields obtained from Laplace by constructing a grid
from the two-tone image Fig. 5.1 and the anti-aliased image Fig. 5.2. The simulated interferograms
in Fig. 5.5 show the speed field of the basis solution obtained by Laplace corresponding to a unit
potential in the lower left port and zero potentials in the other ports. The speed difference between
successive fringes is 0.2 units and the maximum flow speed is ∼1.5 units. The mitigating effect of
anti-aliasing on the artifacts of the boundary jumps is clear from the comparatively smoother speed
contours in the solution at the right.

Figure 5.1: Sample black and white image of a whimsical microchannel design. Curves and lines
that are not aligned with the rows and columns of the image are represented as abrupt steps.

By default, Laplace does not initially attempt to solve the system of equations at the full reso-
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lution of the grid image. Instead, Laplace initially constructs a grid from a copy of the grid image
that is downsampled by a power of two (typically 24 in each direction). Next, Laplace obtains a
complete basis set of solutions at that reduced resolution. Laplace then repeats the process using
successively less downsampling, interpolating initial estimates of the solutions from the previous so-
lutions. This grid-refinement procedure improves the speed, accuracy, and robustness of Laplace on
ill-conditioned domains. Moreover, the solver can be stopped at any point in the solution and still
retain the basis set at the previous resolution. The solver can also be restarted from any step in this
procedure, including restarting by opening a session that was previously saved to disk. This ability
is useful since a reasonable picture of the full-resolution flow solution can often be obtained quickly
at low resolution.

Figure 5.6 shows the effect of grid downsampling on the solution for the flow in the channel
system specified by Figure 5.3. The solution times, ts, are realized on a 750 MHz Pentium III
computer with 512 MB RAM. The leftmost column of images shows the computational grid used
by Laplace at the varying resolutions. The blue-green pixels correspond to zero-height channels
(walls) and are not part of the solution domain. The speed-field interferogram in the second image
column is remarkably consistent with grid scale factor except for the obvious pixelation and aliasing
of the interferogram graphics at the lower resolutions. The streamlines plotted over a color map of
the speed field in the right column fare less well at low resolutions. These lines are produced by
propagating test particles through the flow system using bilinear interpolation of the flow solution.
This approach to finding streamlines suffers from cumulative errors that are unacceptably large at
low resolutions. Figure 5.7 shows overplots of the inverse of the transit time of particles through
the flow system for solutions at different resolutions. All values are normalized to the maximum
value from the full-resolution solution. The horizontal axis is the stream function, φ. For the full-
resolution solution, particles in the small region to the left of the leftmost vertical gray bar flow
from the lower-right port in Fig. 5.3 (port 0) to the narrow port 1 just above it. Particles in the
region between the gray bars flow into the larger port 2 at the top right. The majority of the flow
passes through port 3 at the left. The relative widths of these regions correspond to the relative
flow rates through the ports. Figure 5.7 clearly shows how the particle trajectories lose accuracy
at low solution resolution, affecting both scalar (time) and vector (location) integrated properties.
Alternative approaches to finding streamlines surely perform better than this particle-propagation
method at low resolution. However, particle simulations are favored for their simplicity and their
ability to treat additional transport phenomena.

Laplace can display a variety of fields derived from the potential field solution as a color map,
grayscale map, or simulated interferogram and it can save any of these fields on demand to a binary
or ascii data file for external post processing. Fig. 5.8 shows these fields for an electrokinetic flow in
a unit cell of a uniform array. The electric field is oriented mostly from top to bottom at an angle
of ∼ 11◦ to the right. The fields that can be displayed are

1. Flow speed field

2. Individual velocity components

3. Electrokinetic potential

4. Dielectrophoretic potential

5. Combined electrokinetic and dielectrophoretic potential

6. Deformation rate tensor components

7. Principal deformation magnitude

8. Vector components of the principal deformation
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The location and magnitude of the branch cuts that are evident in the principal deformation vector
fields can also be displayed. All these fields are available for calculation of the propagation of
particles. For example the local velocity fields are useful for treating simple particle propagation
with or without diffusion implemented using a Monte Carlo technique. The combined electrokinetic
and dielectrophoretic potential (and its gradients) are useful for calculating particle trajectories in
both filamentary and trapping dielectrophoretic systems. The deformation rate tensor and principal
deformation fields are useful for semi-analytically treating diffusion and dispersion in microsystems,
especially microarrays.

5.3 Software overview

Because Laplace is intended to fill a range of user requirements, from assisting with theoretical
modeling to device design simulation and optimization, it was written to favor generality and ease
of extension of its capabilities over efficiency. This tradeoff is evident in the choice of a simple
first-order finite-difference solution to the Laplace equation on a uniform, square computational grid
over higher-order solutions, boundary-element methods or semi-analytical methods. As discussed
previously, simple particle propagation techniques are employed since they favor treating additional
transport mechanisms where more sophisticated and specialized techniques could be more accurate,
efficient, and limited.

Laplace uses the superb public software package PETSC[1, 3, 2], a product of Argonne National
Laboratory, to solve the finite-difference matrix equations. This package provides finger-tip access to
advanced solution techniques. The value of the contribution of the PETSC project to this software
and this LDRD cannot be overstated.

Laplace is written in Microsoft Visual C++, extensively using the Microsoft Foundation classes
for the user interface. While this limits the portability of Laplace to Win32 machines, this limitation
is offset by programming convenience and the relative popularity of Win32-based systems. It will
run on any PC, but it is preferable to have >128 MB RAM to perform moderately sized simulations
without page swaps.

5.3 Format and philosophy

Laplace is intended to be a perennial work in progress, with extensions, modules, and capabilities
added as needed. The ability to visualize the results of every processing step in the software was
emphasized to facilitate the development of the software. For example, an image of the actual
computational domain is displayed when a grid is generated as shown for the low-resolution domain
in Fig. 5.9. The user/programmer can always view this domain to reconcile or debug unusual results.
Moreover, the user/programmer can view a graphical representation of the equation corresponding
to a selected pixel in the domain. The images in Fig. 5.10 were obtained by clicking in various
locations on the image while the “View equations” option was selected. The displayed field is an
auto-scaled gray scale image of the coefficient of each pixel/grid point in the equation. The image in
Fig. 5.10.a shows a typical 9-point stencil for the Laplacian operator at an interior point. Because
of the autoscaling, the negative value of the central pixel appears black, and the positive values
of the surrounding points appear white and light gray. The zero-valued coefficients of all other
points are a darker gray. This image is formed by premultiplying a unit vector corresponding to the
selected equation by the transpose of the actual assembled equation matrix. Thus what you see is
what is actually solved and indexing problems show up clearly and immediately. Figs. 5.10.b and
c show the equations used at two points near boundaries. Because of its generality, Laplace must
correctly form equations for all arrangements of surrounding valid (interior) and invalid (exterior)
pixels. Finally, Fig. 5.10.d shows an inlet port equation, this point is an applied potential, thus no
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other pixels are non-zero. Similar graphical views are available for the forcing vector of the matrix
equations.

In keeping with the desire to keep the software simple, early versions of Laplace employed the
simpler 5-point Laplacian stencil. This simpler stencil did not perform well on curved and inclined
boundaries, so the better-performing 9-point stencil was adopted.

5.3 Data display

As shown previously, Laplace can display fields in a variety of formats. The display format is
selected using the dialog window in Fig. 5.11. Any displayed field can be shown as a conventional
color or gray-scale look-up table. If “Clip above Max” is not selected, the lookup table is repeated
modulo the specified range of min to max. The combination of un-selecting “Clip above Max”
and choosing a sinusoidally varying grayscale look-up table allows the user to display the data as
a “simulated interferogram,” a display mode that is preferred for its ability to convey quantitative
data in spite of poor printing or reproduction.

Details about any object pointed at by the cursor are always displayed in the status bar at the
bottom of the main window. These include the double-precision field value, the two-dimensional
coordinate, and the index in the solution vector of the selected point if the object is a field. Similarly,
when a contour or particle is selected by pointing a cursor, details about that contour or particle
are displayed including integrated properties such as time, distance travelled, and vector elongation
and local properties such as velocity, and potential.

5.3 Data exporting

Displayed fields and contours can always be saved to a binary or ASCII file format at the press of
a button. They can be saved in a format suited for publication by printing to a Postscript file. A
variety of other formats for exported data have been developed as needed. Contour and particle
properties can be saved to tab-separated ASCII data files compatible with Excel and other spread-
sheet programs. Contours can also be selected and exported to a text AutoCAD script that draws
the contour into a design drawing. This feature is useful, for example, to contour side walls of an
off-axis microfluidic array to conform to the flow streamlines in an infinite array. This contouring
ideally eliminates the effect of transverse truncation of an array on the flow in the interior of the
array.

5.3 Session serialization

A session can be saved and restored by serialization and deserialization of its data members using the
conventional “save” and “open” commands. This command saves the last completed basis solution
set, and all user settings, including display, particle properties, etc. To minimize file size, contours
and particles are currently not saved, although serialization code has been written for them. The
default extension for saved Laplace sessions is “.mfl.”

5.4 Grid formation

The concept behind the grid generation has been detailed earlier. Laplace imports a computational
domain from a bitmapped image, specifically a “tagged image file” or “TIFF” bitmap whose blue
channel conveys the height of the channel across the image. The red and green channels are presently
unused and may in the future be used to specify internal sources or sinks, specify port boundary
conditions away from image edges, or for some other purpose. The blue channel is an eight-bit value
for each pixel. A value of 0x00 corresponds to channel of zero height, or a wall. A value of 0xFF



5.4. Grid formation 71

(255) corresponds to the tallest possible channel height. The TIFF image is read into an array which
is then optionally downsampled by the current grid scale factor by averaging pixels. For example, if
the grid scale factor is sixteen, sixteen-by-sixteen-pixel regions of the image are averaged to produce
a new image array for specifying the grid.

Only non-zero-valued pixels in the image array are used in the computational grid. On the first
pass through the image, all non-zero pixels are counted. This count is the number of equations to
be solved. A vector of solutions and forcing functions of this size is allocated and a square matrix
of this size squared is allocated. These allocations are performed by calling functions in the PETSC
toolbox. PETSC uses sparse matrix techniques, so opening an image of 200,000 pixels does not
immediately allocate a 40 · 109-element matrix! A forward and reverse map from coordinate (i, j) to
equation index n is made.

The image is scanned for ports where channels intersect the border of an image. These ports
are enumerated. The number of basis solutions required to construct a basis set is one less than
the number of ports, since the last basis solution can be constructed by superimposing the trivial
constant-potential solution and a scaled superposition of the other solutions. Scanning of ports
proceeds along the image boundary in a counter-clockwise sense from the bottom-left corner.

Next the image is scanned for “islands” of zero-pixel values surrounded by channels. These
islands or posts are enumerated. This was originally done so the circulation around each island
could be specified1. Later it was realized that the applied-potential boundary conditions implicitly
force the flow to have no circulation about internal boundaries, as required for an ideal EK flow in
the absence of a time-varying magnetic field. The enumeration of islands and the somewhat involved
coding to generate equations to specify the circulation about arbitrary bodies has been retained as
an option in the code in case studies of EK flows with magnetically induced circulation become of
interest. The enumeration of islands has no other purpose. Passing the cursor over an island causes
the integer identifier of the island to be displayed.

At this stage the equations matrix is ready to be assembled. First the equations for all interior
points are added, including points adjacent to internal boundaries. Next the equations for the
circulation about islands may be optionally added. Finally, the equations for the port boundary
conditions are added both to the equation matrix and the forcing vector. Only these port equations
vary between each basis equation set. The routine to add the port equations is therefore passed an
argument identifying what set of port boundary conditions to apply.

Next, if there is a previous solution to the flow in memory, most commonly a solution at lower
resolution or perhaps a solution having a different set of solver options, the software copies the
previous solution into the initial guesses of the solution, interpolating as needed.

Now, the grid image, equations, and boundary conditions have been formulated and may be
viewed graphically as described above.

5.4 The user interface

The user interface for this operation is quite simple. Pressing the toolbar button “import grid from
image” opens a standard file dialog that by default shows files having the “.tiff” and “.tif” extensions.
Selecting an image and clicking “Open” automatically grids and displays the system at the inititial
grid-scale factor.

If the user wishes to change the initial grid scale factor from its default of 16, before opening
the bitmap, the user should click “View>Solver controller...” and set the desired scale factor in the
dialog that opens. This dialog is described in more detail later.

A special tool was created to facilitate studies of flow in arrays. This tool automatically generates
an image of a unit cell of a square array to user specifications for square and circular posts. This
tool is accessed by clicking the “Create rectangular array” button on the toolbar. The user can then
select the array properties from the popup dialog shown in Fig. 5.12. Processing of the automatically

1Circulation is the line integral of the velocity along a closed curve.
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generated image is the same as described above, except a flag is automatically set that a periodic
solution is sought and the port equations are adjusted accordingly.

5.4 Notes from beneath the hood

The TIFF image is imported into a custom class called a CCArray that supports the resampling
operations. The CCArray is part of a standard family of array classes that have been written to
facilitate image and array manipulation, interpolation, differentiation, etc.

The mapping between pixels and equations is not one–one because there are fewer equations
than pixels. Elements of the forward map are flagged by a negative index at points that do not have
associated equations. These maps, the number of equations, the size of the images, the grid scale,
and other parameters needed to interpret the channel geometry are modularized in a class called
the “CGeometryMap.” In the island-detection step, each island is given a unique negative identifier.
Elements of the forward map at positions on an island are given the (negative) value of the island.

A family of array classes used in Laplace is derived from the super class CMappedArray, which
internally contains an array of values that are mapped to and from a two-dimensional rectangular
field by a CGeometryMap, e.g., solutions to the flow equations that occupy a vector, but that
correspond to the potential at various (i, j) points. The CMappedArray and derived classes were
written to handle (and thus shield the developer from) complex indexing using the CGeometryMap
for things like taking spatial derivatives, interpolating between solution points, etc.

5.5 The flow solver

Following the gridding of the image, the system of equations is ready for solution using the PETSC
toolbox. The solution proceeds by executing the following steps.

1. Initialize the grid scale; clear the solution; open the image or automatically generate the image
at full resolutions.

2. Down-sample the image by the current grid scale; load the interior equations; clear the basis
solution counter.

3. Load the port equations (boundary conditions) for the current basis solution and interpolate
the initial solution estimates from the previous solution, if any.

4. Solve the current system to the specified convergence. Update the displayed field periodically
during the course of the solution. If the user has cancelled the operation, quit this procedure.
The highest-resolution complete basis solution set will be retained, if any.

5. If there are more basis solutions to solve, increment the current basis solution counter and go
back to step 3.; otherwise proceed.

6. Keep a copy of the current complete solution set and discard the previous solution set, if any.
If not at the final grid scale factor, divide the grid scale factor by two and go back to step 2.;
otherwise the solution is complete.

The principal advantage to nesting the grid refinement and basis solution switching in this fashion
is that the user may stop the solver at any point in the solution and retain a complete basis set of
valid solutions.
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5.5 The user interface

The solver controller dialog, shown in Fig. 5.13, allows the user to change the properties of the flow
solver and to start solving for the flow basis set. This dialog pops up automatically after a TIFF
image is loaded and can be opened also by clicking “View>Solver controller...” menu item. This
dialog allows the advanced user to attempt solution using a variety of different Krylov subspaces and
preconditioners, change the initial and final grid-scale factors, and change convergence criteria. The
default values have been found to work well for even very ill-conditioned domains and there is likely
little need to change anything other than the final grid-scale factor or convergence criterion. Clicking
“Solve” initiates the solution. The “Solve” button remains depressed while the solver is running. The
displayed solution updates periodically, and a solver timer in the status bar shows the duration of the
solution. Clicking the “Solve” button during a solution stops the solution when the current internal
iteration of the solver completes. These iterations can be time consuming when large numbers of
equations e.g., >200,000, are being solved, so there may be a lengthy delay before the solver actually
aborts its task. Pressing the “Solve” button again resumes the solution. The properties of the solver
may be changed during the course of a solutions. For example, the convergence criterion or even
the Krylov subspace iterator can be changed mid solution. If the solver is running, the changes
are actually implemented after the current internal iteration is complete. See [3] or [1] for more
information about the numerical schemes and solver options.

5.5 Notes from beneath the hood

The PETSC toolbox is written in the C programming language. To accommodate object-oriented
coding in C++, the CSolver class was written, a wrapper class for all the solver operations. The
solutions are contained in a class called the CSolution and the basis set of solutions is a doubly linked
list of CSolutions called the CSolutionList. The actual work of solving the equations, including the
nested loops described in the previous list is performed in worker threads spawned by the CSolver.
Multi-threading allows the user-interface to be responsive even when the solver is hard at work. The
threads terminate when the solver is finished or when the solution has been cancelled by the user.

5.5 Port boundary conditions

Laplace supports a variety of port boundary conditions, but actually uses only a few in the au-
tomatic solutions: applied potential and applied no flux. The boundary conditions, fluxes, and
properties of the ports can be viewed using the dialog shown in Fig. 5.14. This dialog is accessed by
clicking the “View>Port properties...” menu item. This dialog currently is currently “read only,”
and does not allow the user to modify the boundary conditions. In future developments, this dialog
my be used to allow the user to specify more general boundary conditions. In addition, the user
will in the future be given the options of reviewing the automatically generated basis set, changing
the boundary conditions, and even eliminating some of the solutions, for example, if only a single
particular solution is of interest.

5.6 Flow post-processing

Only half the usefulness of Laplace is its ability to solve for flow fields. In the majority of cases
post-processing of the solution is essential. Often, the goal of simulations is to quantify dispersion
and scalar transport. Also often, sequences of applied fields are required to achieve a desired device
operation, for example injecting a band of analyte into a separation column or mixing two fluid
streams. The post-processor of Laplace has been written to address these needs. Users can specify
sequences of “steps” in a process. Entities called “particles,” “contours,” “flows,” and “super-
particles” are available to simulate transport through these sequences of steps.
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5.6 Steps

A “step” in a sequence corresponds to the application of a specified superposition of basis flows
for a specified amount of time. Steps and sequences can be programmed using the Sequenced-field
properties dialog shown in Fig. 5.15. An arbitrary number of steps may be specified for a sequence.
The user manually edits the coefficients of the solutions contained in basis set of solutions. For user
reference, the port boundary conditions of each solution are summarized in the second column of
the list.

At the start of a step, the particular solution required by the step is calculated by superposition.
Then all the derived fields needed for propagating particles are calculated. These usually only
include the electrokinetic velocity field, but can more generally include the combined electrokinetic
and dielectrophoretic velocity field and the deformation tensor fields. These fields are calculated
once per step, then are available as look-up tables for further post-processing.

5.6 Particles

The particle is the most primitive element that undergoes scalar transport. The other elements
(contours, etc.) are groups of particles. Each particle has a vector location, velocity, and elongation
and scalar elapsed time, propagated distance, starting potential, and current potential, among other
integrated and local properties. Particles also have display properties, e.g., color, and physical
properties including electrokinetic mobility, dielectrophoretic mobility, and diffusivity.

When a particle propagates, it updates all its properties according to the bilinearly interpolated
values of the fields at its location. Particles can be instructed to propagate for a small time step
(treated as an infinitesimal step), for a finite time step, or for a finite total distance. The small-time-
step propagation assumes the local values of the fields, e.g., velocity, are constant over the short
distance propagated. First, integrated values, e.g., the location, are updated using the previously
interpolated local field values. Then the local field values are interpolated at the new particle loca-
tion. The finite distance and time propagation proceeds as a series of these short-time propagation
steps.

If the particle has a finite diffusivity, at each small-time-step a suitably scaled random velocity
perturbation is added to the interpolated local velocity.

5.6 Contours

Three types of contours are currently supported: streamlines, streaklines, and pathlines, each having
their usual meaning. Figs. 5.16.a and b respectively show streamlines and streaklines of an EK
flow in an array of posts. Because these contours are calculated by propagating particles, they
can be augmented by additional transport mechanisms. For example, Fig. 5.17.a shows streaks
of simulated particles undergoing both electrokinesis and diffusion. Figure 5.17.b show streaks of
simulated particles undergoing electrokinesis, dielectrophoresis, and diffusion. The dielectrophoretic
mobility of particles in Fig. 5.17.b is high enough that trapping is evident. The background image is
a spectral color map of the mean speed of particles. The differences between the background images
and particle streaks in Figs. 5.17.a and b highlights how dielectrophoresis modifies both the Eulerian
and Lagrangian particle motion.

5.6 Super particles

Super particles are special-purpose objects that propagate through the flow providing advanced
diagnostic information, normally to assist with theoretical work. For example, one super particle is
a collection of a large number of diffusing particles that are initially at the same location. As the
super particle propagates, it provides information about the location distribution of the diffusing
particles. Another super particle consists of a small ring of particles surrounding a central particle.
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This particle quantifies the finite elongation and deformation experienced by a particle traversing
the system. Both these super particles are useful in the process of validating theoretical models of
dispersion and diffusion.

Super particles can be launched at any point in a flow by simply double-clicking on the flow
image where the particle is desired.

5.6 Flows

In Laplace a flow is a dense collection of non-interacting particles. Flows are a computation-
ally inefficient way to simulate transport of a scalar in a microsystem. They are included in the
Laplace application for completeness, but their use is not recommended.

5.7 Conclusions

Laplace is an application that supports both rapid evaluation of designs and detailed simulation
of transport processes in microsystems. The novel use of a bitmap image to specify the channel
geometry puts quantitative analysis of ideal EK and DEP microfluidic systems in reach of anyone
with a drawing program. Solution of a basis set of applied-potential solutions for a four-port system
of ∼200,000 equations (channel pixels) takes only four minutes on a mid-range personal computer,
while systems of ∼10,000 equations take under 4 seconds. The time elapsed from sketch of a design
concept to complete solution and simulation of scalar transport in the design is measured in single-
digit minutes. A designer can perform a dozen design optimization iterations in an hour.

Laplace has been designed to support coding development, with advanced debugging features
like the ability to view graphically any interior or boundary equation. Complicated indexing and
array manipulations have been placed in thoroughly tested classes of objects that are available to
the developer.

Laplace has also been designed to provide the user a circumspect view of simulation results. A
variety of fields derived from the solutions may be displayed in a many different visual formats or
saved to disk for external post processing. Post-processing of solutions allows the user to generate,
view, and save to disk quantitative streamlines, streaklines, and pathlines. By specifying a finite
particle diffusivity or dielectrophoretic mobility, the user can simulate complex transport phenomena
like trapping and filamentary dielectrophoresis.

5.8 Future development areas

As stated earlier, Laplace is a work in progress. It is expanding to meet the needs of both designers
and theoreticians. Several priority areas of expansion have been identified:

1. quantification of dispersion by both direct simulation and semi-analytical theory,

2. automated design optimization,

3. quantification of filamentary dielectrophoresis by both direct simulation and semi-analytical
theory, and

4. implementation of (and user access to) a broader range of boundary conditions.

Many other developments are possible, e.g., simultaneously handling particles having different phys-
ical properties, treating non-ideal effects perturbatively, etc. Any such developments will be driven
by customer need.
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Figure 5.2: Sample anti-aliased gray-scale image of the same whimsical design as in Fig. 5.1. Bound-
ary curves and lines are smoothed by representing them using grayscales. This smoothing dramati-
cally improves numerical results produced by Laplace .
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Figure 5.3: Sample anti-aliased and blurred gray-scale image of the same whimsical design. The
blurring simulates the slope of walls that are fabricated using non-ideal techniques, e.g., embossing
by an imperfect stamp. This allows the user to simulate systems that approximate production
geometries.
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Figure 5.4: Close up of a corner from the previous three grids showing the effect of anti-aliasing and
blurring.
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Figure 5.5: Particular speed field solutions obtained by Laplace using the black-and-white grid
in Fig. 5.1 at left and the gray-scale grid in Fig. 5.2 at right. The speed fields are presented as
simulated interferograms. The solution at left shows considerable artifacts of the discrete boundary
steps, while that at right is less affected.
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Figure 5.6: Grids and solutions derived from Fig. 5.3 at varying amounts of downsampling. The
image in the left column is the downsampled grid image (blue-green pixels are outside the solution
domain). The center column of images shows a simulated interferogram of the speed field. The right
column shows calculated streamlines overlayed on a color map of the speed field. The streamlines
are affected more than the speed field by reductions in resolution.
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Figure 5.7: Calculated curves of the inverse of the particle transit time through the whimsical
microsystem versus stream function. The gross deviations of these curves at low resolution is caused
by cumulative errors from interpolation in the particle-propagation.
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Figure 5.8: Fields that Laplace can display and save to disk.
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Figure 5.9: Screen shot of Laplace displaying the computational grid of an array at low resolution.
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Figure 5.10: Screen shots of Laplace graphically displaying the equations automatically generated
an interior point (a.) near an internal boundary (b. and c.) and at a port (d.) Interior equations
are gridded using a 9-point Laplacian stencil. Equations next to boundaries require a customized
stencil.
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Figure 5.11: Screen shot showing the dialog box used to adjust the way field images are displayed.

Figure 5.12: Screen shot of dialog used to set the properties of the automatically generated array
image.
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Figure 5.13: Screen shot of the solver-controller dialog showing the daunting list of Krylov subspace
iterator options. Fortunately the default settings have been chosen for their good performance on
even ill-conditioned geometries. Press “Solve” to solve.

Figure 5.14: Screen shot of the port-properties dialog. This dialog is currently “read only” but that
status may change in future developments.
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Figure 5.15: Screen shot of the sequenced-field-properties dialog that allows users to specify an
arbitrary sequence of propagation steps for post-processing of the solution.
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Figure 5.16: Electrokinetic streamlines and streaklines in an array of circular posts. The background
image shows a spectral color map of the electrokinetic speed. Blue is the highest speed and red is
zero speed.
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Figure 5.17: Streaklines of simulated particles undergoing electrokinesis and diffusion (a.) and
electrokinesis, dielectrophoresis, and diffusion (b.). Trapping dielectrophoresis is evident in b. The
background image is a color map of the mean particle speed through the array. Blue is the highest
speed and red is zero speed.
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